Ai, Q., Yang, L., Guo, J., & Croft, W. B. (2016a). Analysis of the paragraph vector model for information retrieval. In Proceedings of the 2016 ACM international conference on the theory of information retrieval, ACM, New York, NY, USA, ICTIR’16 (pp. 133–142).
Ai, Q., Yang, L., Guo, J., & Croft, W. B. (2016b). Improving language estimation with the paragraph vector model for ad-hoc retrieval. In Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval, ACM, New York, NY, USA, SIGIR’16 (pp. 869–872).
ALMasri, M., Berrut, C., & Chevallet, J. P. (2016). A comparison of deep learning based query expansion with pseudo-relevance feedback and mutual information. In European conference on information retrieval (pp. 709–715). Springer.
Amati, G., & Van Rijsbergen, C. J. (2002). Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Transactions on Information Systems (TOIS), 20(4), 357–389.
Article
Google Scholar
Amer, N. O., Mulhem, P., & Gery, M. (2016). Toward word embedding for personalized information retrieval. In ACM SIGIR Workshop on Neural Information Retrieval (Neu-IR).
Andoni, A., & Indyk, P. (2006). Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In 2006 47th annual IEEE symposium on foundations of computer science (FOCS’06) (pp. 459–468). IEEE.
Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning—A new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine, 5(4), 13–18.
Article
Google Scholar
Azimi, J., Alam, A., & Zhang, R. (2015) .Ads keyword rewriting using search engine results. In Proceedings of the 24th international conference on world wide web, international world wide web conferences steering committee, Republic and Canton of Geneva, Switzerland, WWW’15 Companion (pp. 3–4). https://doi.org/10.1145/2740908.2742739.
Azzopardi, L., de Rijke, M., & Balog, K. (2007). Building simulated queries for known-item topics: An analysis using six European languages. In 30th annual international ACM SIGIR conference on research & development on information retrieval, ACM.
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:14090473.
Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa, K., Qi, Y., et al. (2009). Supervised semantic indexing. In Proceedings of the 18th ACM conference on information and knowledge management (pp 187–196). ACM.
Balikas, G., & Amini, M.R. (2016). An empirical study on large scale text classification with skip-gram embeddings. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Bar-Yossef, Z., & Kraus, N. (2011). Context-sensitive query auto-completion. In Proceedings of the 20th international conference on world wide web (pp 107–116). ACM.
Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of the 52nd annual meeting of the association for computational linguistics (Volume 1: Long Papers) (pp. 238–247). Association for Computational Linguistics.
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2015). Automatic differentiation in machine learning: A survey. arXiv preprint arXiv:150205767.
Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1), 1–127.
Article
MATH
Google Scholar
Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003a). A neural probabilistic language model. Journal of Machine Learning Research, 3, 1137–1155.
MATH
Google Scholar
Bengio, Y., & Senécal, J. S. (2003b). Quick training of probabilistic neural nets by importance sampling. In AISTATS.
Berendsen, R., Balog, K., Bogers, T., van den Bosch, A., & de Rijke, M. (2013a). On the assessment of expertise profiles. Journal of the American Society for Information Science and Technology, 64(10), 2024–2044.
Article
Google Scholar
Berendsen, R., Tsagkias, M., Weerkamp, W., & de Rijke, M. (2013b). Pseudo test collections for training and tuning microblog rankers. In SIGIR’13: 36th international ACM SIGIR conference on research and development in information retrieval. ACM.
Berger, A., & Lafferty, J. (1999). Information retrieval as statistical translation. In Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval (pp. 222–229). ACM.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993–1022.
MATH
Google Scholar
Bordes, A., Chopra, S., & Weston, J. (2014). Question answering with subgraph embeddings. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 615–620). Association for Computational Linguistics.
Borisov, A., Markov, I., de Rijke, M., & Serdyukov, P. (2016a). A context-aware time model for web search. In SIGIR 2016: 39th international ACM SIGIR conference on research and development in information retrieval (pp. 205–214). ACM.
Borisov, A., Markov, I., de Rijke, M., & Serdyukov, P. (2016b). A neural click model for web search. In Proceedings of the 25th international conference on world wide web, international world wide web conferences steering committee (pp. 531–541).
Boytsov, L., Novak, D., Malkov, Y., & Nyberg, E. (2016). Off the beaten path: Let’s replace term-based retrieval with k-nn search. In Proceedings of the 25th ACM international on conference on information and knowledge management (pp. 1099–1108). ACM.
Broder, A., Domingos, P., de Freitas, N., Guyon, I., Malik, J., & Neville, J. (2016). Is deep learning the new 42? In plenary panel at the 22nd ACM SIGKDD international conference on knowledge discovery and data mining.
Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., et al. (1993). Signature verification using a siamese time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 7(04), 669–688.
Article
Google Scholar
Cai, F., & de Rijke, M. (2016a). Learning from homologous queries and semantically related terms for query auto completion. Information Processing & Management, 52(4), 628–643.
Article
Google Scholar
Cai, F., & de Rijke, M. (2016b). A survey of query auto completion in information retrieval. Foundations and Trends in Information Retrieval, 10(4), 273–363.
Article
Google Scholar
Cai, F., Liang, S., & de Rijke, M. (2014). Time-sensitive personalized query auto-completion. In Proceedings of the 23rd ACM international conference on conference on information and knowledge management (pp. 1599–1608). ACM.
Carmel, D., Zwerdling, N., Guy, I., Ofek-Koifman, S., Har’El, N., Ronen, I., et al. (2009). Personalized social search based on the user’s social network. In Proceedings of the 18th ACM conference on information and knowledge management (pp. 1227–1236). ACM.
Carpineto, C., & Romano, G. (2012). A survey of automatic query expansion in information retrieval. ACM Computing Surveys, 44(1), 1:1–1:50.
Article
MATH
Google Scholar
Cartright, M. A., Allan, J., Lavrenko, V., & McGregor, A. (2010). Fast query expansion using approximations of relevance models. In Proceedings of the 19th ACM international conference on information and knowledge management (pp. 1573–1576). ACM.
Charikar, M. S. (2002). Similarity estimation techniques from rounding algorithms. In Proceedings of the thirty-fourth annual ACM symposium on theory of computing (pp. 380–388). ACM.
Chen, W., Grangier, D., & Auli, M. (2016). Strategies for training large vocabulary neural language models. In Proceedings of the 54th annual meeting of the association for computational linguistics (Volume 1: Long Papers) (pp. 1975–1985). Association for Computational Linguistics, Berlin, Germany.
Chirita, P. A., Firan, C. S., & Nejdl, W. (2007). Personalized query expansion for the web. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (pp. 7–14). ACM.
Cho, K. (2015). Natural language understanding with distributed representation. arXiv preprint arXiv:151107916.
Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR arXiv:1406.1078.
Chuklin, A., Markov, I., & de Rijke M. (2015). Click models for web search. Synthesis lectures on information concepts, retrieval, and services. Morgan & Claypool Publishers.
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. In NIPS workshop on deep learning.
Clinchant, S., & Perronnin, F. (2013). Aggregating continuous word embeddings for information retrieval. In Proceedings of the workshop on continuous vector space models and their compositionality (pp. 100–109).
Cohen, D., Ai, Q., & Croft, W. B. (2016). Adaptability of neural networks on varying granularity IR tasks. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th international conference on machine learning (pp. 160–167). ACM.
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12(Aug), 2493–2537.
MATH
Google Scholar
Conneau, A., Schwenk, H., Barrault, L., & Lecun, Y. (2016). Very deep convolutional networks for natural language processing. arXiv preprint arXiv:160601781.
Croft, B., Metzler, D., & Strohman, T. (2009). Search engines: information retrieval in practice. Boston: Addison-Wesley.
Google Scholar
Dai, A. M., Olah, C., Le, Q. V., & Corrado, G. S. (2014). Document embedding with paragraph vectors. In NIPS deep learning workshop.
Dang, V., & Croft, B. W. (2010). Query reformulation using anchor text. In Proceedings of the third ACM international conference on web search and data mining (pp. 41–50). ACM.
Darragh, J. J., Witten, I. H., & James, M. L. (1990). The reactive keyboard: A predictive typing aid. Computer, 23(11), 41–49.
Article
Google Scholar
Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S. (2004). Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on computational geometry (pp. 253–262). ACM.
De Vine, L., Zuccon, G., Koopman, B., Sitbon, L., & Bruza, P. (2014). Medical semantic similarity with a neural language model. In Proceedings of the 23rd ACM international conference on conference on information and knowledge management (pp. 1819–1822). ACM.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391.
Article
Google Scholar
Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Transactions on Signal and Information Processing, 3, e2.
Article
Google Scholar
Deng, L., & Yu, D. (2013). Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 7(3–4), 197–387.
MathSciNet
MATH
Google Scholar
Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., & Cohen, W. (2016). Tweet2vec: Character-based distributed representations for social media. In Proceedings of the 54th annual meeting of the association for computational linguistics (Volume 2: Short Papers) (pp. 269–274), Association for Computational Linguistics.
Diaz, F., Mitra, B., & Craswell, N. (2016). Query expansion with locally-trained word embeddings. In 54th annual meeting of the association for computational linguistics (Volume 1: Long Papers) (pp. 367–377), Association for Computational Linguistics, Berlin, Germany.
Djuric, N., Wu, H., Radosavljevic, V., Grbovic, M., & Bhamidipati, N. (2015). Hierarchical neural language models for joint representation of streaming documents and their content. In Proceedings of the 24th international conference on world wide web, ACM, New York, NY, USA, WWW’15 (pp. 248–255).
Dumais, S., Banko, M., Brill, E., Lin, J., & Ng, A. (2002). Web question answering: Is more always better? In Proceedings of the 25th annual International ACM SIGIR conference on research and development in information retrieval (pp. 291–298). ACM.
Dyer, C. (2014). Notes on noise contrastive estimation and negative sampling. CoRR arXiv:1410.8251.
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.
Article
Google Scholar
Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., & Bengio, S. (2010). Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11(Feb), 625–660.
MathSciNet
MATH
Google Scholar
Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., & Smith, N. A. (2014). Retrofitting word vectors to semantic lexicons. arXiv preprint arXiv:14114166.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
MathSciNet
Article
MATH
Google Scholar
Ganguly, D., Roy, D., Mitra, M., & Jones, G. J. (2015). Word embedding based generalized language model for information retrieval. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval (pp. 795–798). ACM.
Ganguly, D., Roy, D., Mitra, M., & Jones, G. (2016). Representing documents and queries as sets of word embedded vectors for information retrieval. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Gao, J., He, X., & Li, D. (2015). Deep learning for web search and natural language processing. Microsoft Research Technical Report. Redmond, WA: Microsoft Corporation
Gao, J., He, X., & Nie, J. Y. (2010). Clickthrough-based translation models for web search: From word models to phrase models. In Proceedings of the 19th ACM international conference on information and knowledge management (CIKM) (pp. 1139–1148). ACM.
Gao, J., Pantel, P., Gamon, M., He, X., & Deng, L. (2014). Modeling interestingness with deep neural networks. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), Association for Computational Linguistics, Doha, Qatar (pp. 2–13).
Goldberg, Y. (2016). A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research, 57, 345–420.
MathSciNet
MATH
Google Scholar
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.
MATH
Google Scholar
Graves, A. (2012). Neural networks. In Supervised sequence labelling with recurrent neural networks (pp. 15–35). Springer.
Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:13080850.
Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint arXiv:14105401.
Grbovic, M., Djuric, N., Radosavljevic, V., & Bhamidipati, N. (2015a). Search retargeting using directed query embeddings. In Proceedings of the 24th international conference on world wide web, ACM, New York, NY, USA, WWW’15 companion (pp. 37–38).
Grbovic, M., Djuric, N., Radosavljevic, V., Silvestri, F., & Bhamidipati, N. (2015b). Context-and content-aware embeddings for query rewriting in sponsored search. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval (pp. 383–392). ACM.
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2015). Lstm: A search space odyssey. arXiv preprint arXiv:150304069.
Guo, J., Fan, Y., Ai, Q., & Croft, W. B. (2016a). A deep relevance matching model for ad-hoc retrieval. In The 25th ACM international conference on information and knowledge management, Indianapolis, United States.
Guo, J., Fan, Y., Ai, Q., & Croft, W. B. (2016b). A deep relevance matching model for ad-hoc retrieval. In CIKM 2016: 25th ACM conference on information and knowledge management, ACM.
Gupta, P., Bali, K., Banchs, R. E., Choudhury, M., & Rosso, P. (2014). Query expansion for mixed-script information retrieval. In Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval (pp. 677–686). ACM.
Gutmann, M. U., & Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. Journal of Machine Learning Research, 13(1), 307–361.
MathSciNet
MATH
Google Scholar
Harman, D., & Buckley, C. (2009). Overview of the reliable information access workshop. Information Retrieval, 12(6), 615–641.
Article
Google Scholar
Harris, Z. S. (1954). Distributional structure. Word, 10(2–3), 146–162.
Article
Google Scholar
Hill, F., Cho, K., & Korhonen, A. (2016). Learning distributed representations of sentences from unlabelled data. In Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: Human language technologies, Association for Computational Linguistics, San Diego, California, (pp. 1367–1377).
Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, Ar., Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.
MathSciNet
Article
MATH
Google Scholar
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
Article
Google Scholar
Hu, B., Lu, Z., Li, H., & Chen, Q. (2014). Convolutional neural network architectures for matching natural language sentences. In Advances in neural information processing systems (pp. 2042–2050).
Huang, P. S., He, X., Gao, J., Deng, L., Acero, A., & Heck, L. (2013). Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM international conference on information & knowledge management (pp. 2333–2338). ACM.
Jaakkola, T. S., & Haussler, D. (1999). Exploiting generative models in discriminative classifiers. Advances in Neural Information Processing Systems (pp. 487–493).
Jiang, J. Y., Ke, Y. Y., Chien, P. Y., & Cheng, P. J. (2014). Learning user reformulation behavior for query auto-completion. In Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval (pp. 445–454). ACM.
Jurgovsky, J., Granitzer, M., & Seifert, C. (2016) Evaluating memory efficiency and robustness of word embeddings. In European conference on information retrieval (pp. 200–211). Springer.
Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for modelling sentences. arXiv preprint arXiv:14042188.
Kanhabua, N., Ren, H., & Moeslund, T. B. (2016). Learning dynamic classes of events using stacked multilayer perceptron networks. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Kenter, T., & de Rijke, M. (2015). Short text similarity with word embeddings. In Proceedings of the 24th ACM international on conference on information and knowledge management (pp. 1411–1420). ACM.
Kim, S., Wilbur, W. J., & Lu, Z. (2016). Bridging the gap: A semantic similarity measure between queries and documents. arXiv preprint arXiv:160801972.
Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:14085882.
Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., et al. (2015). Skip-thought vectors. In Advances in neural information processing systems (pp. 3294–3302).
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105).
Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., et al. (2015). Ask me anything: Dynamic memory networks for natural language processing. arXiv preprint arXiv:150607285.
Kusner, M. J., Sun, Y., Kolkin, N. I., & Weinberger, K. Q. (2015). From word embeddings to document distances. In Proceedings of the 32nd international conference on machine learning (ICML 2015) (pp. 957–966).
Lavrenko, V., & Croft, W. B. (2001). Relevance based language models. In Proceedings of the 24th annual international ACM SIGIR conference on research and development in information retrieval, ACM, New York, NY, USA, SIGIR’01 (pp. 120–127).
Le, Q. V., & Mikolov, T. (2014). Distributed representations of sentences and documents. In ICML (Vol. 14, pp. 1188–1196).
LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 3361(10), 1995.
Google Scholar
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
Article
Google Scholar
Lee, C. J., Ai, Q., Croft, W. B., & Sheldon, D. (2015). An optimization framework for merging multiple result lists. In Proceedings of the 24th ACM international on conference on information and knowledge management (pp. 303–312). ACM.
Lei, T., Joshi, H., Barzilay, R., Jaakkola, T. S., Tymoshenko, K., Moschitti, A., et al. (2016). Semi-supervised question retrieval with gated convolutions. In NAACL HLT 2016, The 2016 conference of the North American chapter of the association for computational linguistics: Human language technologies, San Diego California, USA, June 12–17, 2016 (pp. 1279–1289).
Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving distributional similarity with lessons learned from word embeddings. Transactions of the Association for Computational Linguistics, 3, 211–225.
Google Scholar
Li, H. (2016, July). Does IR need deep learning? In Keynote speech at SIGIR 2016 Neu-IR workshop, Pisa.
Li, H., & Lu, Z. (2016). Deep learning for information retrieval. In SIGIR, Pisa, Italy, vol tutorial at the 39th international ACM SIGIR conference on research and development in information retrieval (pp. 1203–1206).
Li, H., & Xu, J. (2013). Semantic matching in search. Foundations and Trends in Information Retrieval, 7(5), 343–469.
Article
Google Scholar
Li, J., Luong, M. T., Jurafsky, D., & Hovy, E. (2015). When are tree structures necessary for deep learning of representations? arXiv preprint arXiv:150300185.
Li, X., Guo, C., Chu, W., Wang, Y.-Y., & Shavlik, J. (2014). Deep learning powered in-session contextual ranking using clickthrough data. In Workshop on personalization: Methods and applications, Neural Information Processing Systems (NIPS).
Liao, H., Peng, L., Liu, Z., & Shen, X. (2014). ipinyou global rtb bidding algorithm competition dataset. In Proceedings of the eighth international workshop on data mining for online advertising (pp. 1–6). ACM.
Lioma, C., Larsen, B., Petersen, C., & Simonsen, J. G. (2016). Deep learning relevance: Creating relevant information (as opposed to retrieving it). In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Liu, T. Y. (2009). Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 3(3), 225–331.
Article
Google Scholar
Liu, W., Wang, J., Ji, R., Jiang, Y. G., & Chang, S. F. (2012). Supervised hashing with kernels. In 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2074–2081). IEEE.
Liu, X., & Croft, W. B. (2004). Cluster-based retrieval using language models. In Proceedings of the 27th annual international ACM SIGIR conference on research and development in information retrieval (pp. 186–193). ACM.
Liu, X., Gao, J., He, X., Deng, L., Duh, K., & Wang, Y. Y. (2015). Representation learning using multi-task deep neural networks for semantic classification and information retrieval. In Proceedings of the 2015 conference of the north american chapter of the association for computational linguistics: Human language technologies, Association for Computational Linguistics, Denver, Colorado (pp. 912–921).
Lu, Z., & Li, H. (2013). A deep architecture for matching short texts. In Advances in neural information processing systems (pp. 1367–1375).
Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, & Computers, 28(2), 203–208.
Article
Google Scholar
Luukkonen, P., Koskela, M., & Floreen, P. (2016). LSTM-based predictions for proactive information retrieval. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Ma, L., Lu, Z., & Li, H. (2015a). Learning to answer questions from image using convolutional neural network. arXiv preprint arXiv:150600333.
Ma, L., Lu, Z., Shang, L., & Li, H. (2015b). Multimodal convolutional neural networks for matching image and sentence. In Proceedings of the IEEE international conference on computer vision (pp. 2623–2631).
Ma, L., Lu, Z., & Li, H. (2016). Learning to answer questions from image using convolutional neural network. In AAAI conference on artificial intelligence (pp. 3567–3573).
Manning, C. (2016). Understanding human language: Can NLP and deep learning help? In Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval, SIGIR ’16, Pisa, Italy. New York, NY: ACM.
Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge: Cambridge University Press.
Book
MATH
Google Scholar
Manotumruksa, J., Macdonald, C., & Ounis, I. (2016). Modelling user preferences using word embeddings for context-aware venue recommendation. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
McAuley, J., Pandey, R., & Leskovec, J. (2015). Inferring networks of substitutable and complementary products. In KDD: ACM (pp. 785–794).
McClelland, J. L., Rumelhart, D. E., PDP Research Group. (1986). Parallel distributed processing. Explorations in the microstructure of cognition (Vol. 2, pp. 216–271).
Mesnil, G., He, X., Deng, L., & Bengio, Y. (2013). Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding. In INTERSPEECH (pp. 3771–3775).
Mesnil, G., Mikolov, T., Ranzato, M., & Bengio, Y. (2014). Ensemble of generative and discriminative techniques for sentiment analysis of movie reviews. In International conference on learning representations (ICLR).
Metz, C. (2016). AI is transforming Google search. The rest of the web is next. WIRED Magazine.
Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., & Khudanpur, S. (2010). Recurrent neural network based language model. In INTERSPEECH (pp. 1045–1048).
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vector space. CoRR arXiv:1301.3781.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 26, pp. 3111–3119). Curran Associates, Inc.
Mikolov, T., Yih, W., & Zweig, G. (2013c). Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the North American chapter of the association for computational linguistics: Human language technologies, Association for Computational Linguistics, Atlanta, Georgia, (pp. 746–751).
Mitchell, J., & Lapata, M. (2010). Composition in distributional models of semantics. Cognitive Science, 34(8), 1388–1429. https://doi.org/10.1111/j.1551-6709.2010.01106.x.
Article
Google Scholar
Mitra, B. (2015). Exploring session context using distributed representations of queries and reformulations. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval (pp. 3–12). ACM.
Mitra, B., & Craswell, N. (2015). Query auto-completion for rare prefixes. In Proceedings of the 24th ACM international on conference on information and knowledge management (pp. 1755–1758). ACM.
Mitra, B., Nalisnick, E., Craswell, N., & Caruana, R. (2016). A dual embedding space model for document ranking. arXiv preprint arXiv:160201137.
Mnih, A., & Teh, Y. W. (2012). A fast and simple algorithm for training neural probabilistic language models. arXiv preprint arXiv:12066426.
Morin, F., & Bengio, Y. (2005). Hierarchical probabilistic neural network language model. In Proceedings of the tenth international workshop on artificial intelligence and statistics, AISTATS 2005, Bridgetown, Barbados, January 6–8, 2005.
Moshfeghi, Y., Triantafillou, P., & Pollick, F. E. (2016). Understanding information need: An fMRI study. In Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval, ACM, New York, NY, USA, SIGIR’16 (pp. 335–344).
Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807–814).
Nalisnick, E., Mitra, B., Craswell, N., & Caruana, R. (2016). Improving document ranking with dual word embeddings. In 25th World Wide Web (WWW) conference companion volume, International World Wide Web Conferences Steering Committee (pp. 83–84).
Neelakantan, A., Shankar, J., Passos, A., & McCallum, A. (2014). Efficient non-parametric estimation of multiple embeddings per word in vector space. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1059–1069).
Nguyen, G. H., Tamine, L., Soulier, L., & Bricon-Souf, N. (2016). Toward a deep neural approach for knowledge-based IR. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Onal, K. D., Altingovde, I. S., & Karagoz, P. (2015). Utilizing word embeddings for result diversification in tweet search (pp. 366–378). Cham: Springer. https://doi.org/10.1007/978-3-319-28940-3_29.
Ordentlich, E., Yang, L., Feng, A., Cnudde, P., Grbovic, M., Djuric, N., et al. (2016). Network-efficient distributed Word2vec training system for large vocabularies. In The 25th ACM international conference on information and knowledge management, Indianapolis, United States.
Palakodety, S., & Callan, J. (2014). Query transformations for result merging. In Proceedings of the twenty-third text REtrieval conference, TREC 2014, Gaithersburg, Maryland, USA, November 19–21, 2014.
Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., et al. (2014). Semantic modelling with long-short-term memory for information retrieval. CoRR arXiv:1412.6629.
Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., et al. (2016). Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(4), 694–707.
Article
Google Scholar
Pang, L., Lan, Y., Guo, J., Xu, J., & Cheng, X. (2016a) A study of matchpyramid models on ad-hoc retrieval. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., & Cheng, X. (2016b). Text matching as image recognition. In 30th AAAI conference on artificial intelligence (pp. 2793–2799).
Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. ICML (3), 28, 1310–1318.
Google Scholar
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In EMNLP (Vol. 14, pp. 1532–1543).
Ponte, J. M., & Croft, W. B. (1998). A language modeling approach to information retrieval. In Proceedings of the 21st annual international ACM SIGIR conference on research and development in information retrieval (pp. 275–281). ACM.
Radlinski, F., & Joachims, T. (2005). Query chains: Learning to rank from implicit feedback. In Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining, ACM, New York, NY, USA, KDD’05 (pp. 239–248).
Rekabsaz, N., Lupu, M., & Hanbury, A. (2016a). Uncertainty in neural network word embedding exploration of potential threshold. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Rekabsaz, N., Lupu, M., Hanbury, A., & Zuccon, G. (2016b) Generalizing translation models in the probabilistic relevance framework. In Proceedings of the 25th ACM international on conference on information and knowledge management, CIKM ’16, Indianapolis, Indiana (pp. 711–720). New York, NY: ACM.
Robertson, S. (2004). Understanding inverse document frequency: On theoretical arguments for idf. Journal of Documentation, 60(5), 503–520.
Article
Google Scholar
Rocchio, J. J. (1971). Relevance feedback in information retrieval. The smart retrieval system-experiments in automatic document processing (pp. 313–323).
Roy, D., Ganguly, D., Mitra, M., & Jones, G. J. (2016a). Word vector compositionality based relevance feedback using kernel density estimation. In Proceedings of the 25th ACM international on conference on information and knowledge management, ACM, New York, NY, USA, CIKM’16 (pp. 1281–1290).
Roy, D., Paul, D., & Mitra, M. (2016b). Using word embeddings for automatic query expansion. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by back-propagating errors. Cognitive Modeling, 5(3), 1.
MATH
Google Scholar
Salakhutdinov, R., & Hinton, G. (2009). Semantic hashing. International Journal of Approximate Reasoning, 50(7), 969–978.
Article
Google Scholar
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003.
Article
Google Scholar
Sennrich, R., Haddow, B., & Birch, A. (2016). Neural machine translation of rare words with subword units. In Proceedings of the 54th annual meeting of the association for computational linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Berlin, Germany (pp. 1715–1725).
Severyn, A., & Moschitti, A. (2015). Learning to rank short text pairs with convolutional deep neural networks. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval (pp. 373–382). ACM.
Shen, Y., He, X., Gao, J., Deng, L., & Mesnil, G. (2014a). A latent semantic model with convolutional-pooling structure for information retrieval. In Proceedings of the 23rd ACM international conference on conference on information and knowledge management (pp. 101–110). ACM.
Shen, Y., He, X., Gao, J., Deng, L., & Mesnil, G. (2014b). Learning semantic representations using convolutional neural networks for web search. In Proceedings of the 23rd international conference on world wide web (pp. 373–374). ACM.
Shokouhi, M., & Radinsky, K. (2012). Time-sensitive query auto-completion. In Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval (pp. 601–610). ACM.
Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. Technical report, DTIC document.
Socher, R., Chen, D., Manning, C. D., & Ng, A. (2013). Reasoning with neural tensor networks for knowledge base completion. In Advances in neural information processing systems (pp. 926–934).
Song, Y., Elkahky, A. M., & He, X. (2016). Multi-rate deep learning for temporal recommendation. In Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval, ACM, New York, NY, USA, SIGIR’16 (pp. 909–912).
Sordoni, A., Bengio, Y., & Nie, J.Y. (2014). Learning concept embeddings for query expansion by quantum entropy minimization. In AAAI (pp. 1586–1592).
Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Grue Simonsen, J., & Nie, J. Y. (2015). A hierarchical recurrent encoder-decoder for generative context-aware query suggestion. In Proceedings of the 24th ACM international on conference on information and knowledge management (CIKM) (pp. 553–562). ACM.
Suggu, S. P., Goutham, K. N., Chinnakotla, M. K., & Shrivastava, M. (2016). Deep feature fusion network for answer quality prediction in community question answering. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Sutskever, I., Vinyals, O., & Le ,Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104–3112).
Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations from tree-structured long short-term memory networks. In Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (Volume 1: Long Papers), Association for Computational Linguistics, Beijing, China (pp. 1556–1566).
Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research (JAIR), 37, 141–188. https://doi.org/10.1613/jair.2934.
MathSciNet
MATH
Google Scholar
van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.
MATH
Google Scholar
Van Gysel, C., de Rijke, M., & Kanoulas, E. (2016a). Learning latent vector spaces for product search. In CIKM 2016: 25th ACM conference on information and knowledge management. ACM.
Van Gysel, C., de Rijke, M., & Worring, M. (2016b). Unsupervised, efficient and semantic expertise retrieval. In Proceedings of the 25th international conference on world wide web, international world wide web conferences steering committee, Republic and Canton of Geneva, Switzerland, WWW’16 (pp. 1069–1079). https://doi.org/10.1145/2872427.2882974.
Vulic, I., & Moens, M. F. (2015). Monolingual and cross-lingual information retrieval models based on (bilingual) word embeddings. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval (pp. 363–372). ACM.
Wan, J., Wang, D., Hoi, S. C. H., Wu, P., Zhu, J., Zhang, Y., et al. (2014). Deep learning for content-based image retrieval: A comprehensive study. In Proceedings of the 22nd ACM international conference on multimedia (pp. 157–166). ACM.
Wang, D., & Nyberg, E. (2015). A long short-term memory model for answer sentence selection in question answering. ACL, July.
Wang, M., Smith, N. A., & Mitamura, T. (2007). What is the jeopardy model? a quasi-synchronous grammar for qa. In EMNLP-CoNLL (Vol. 7, pp. 22–32).
Wei, X., & Croft, W. B. (2006). Lda-based document models for ad-hoc retrieval. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 178–185). ACM.
Weiss, Y., Torralba. A., & Fergus, R. (2009). Spectral hashing. In Advances in neural information processing systems (pp. 1753–1760).
Weston, J., Bengio, S., & Usunier, N. (2010). Large scale image annotation: Learning to rank with joint word-image embeddings. Machine Learning, 81(1), 21–35.
MathSciNet
Article
Google Scholar
Weston, J., Chopra, S., & Bordes, A. (2014). Memory networks. In International conference on learning representations (ICLR).
Wu, Q., Burges, C. J., Svore, K. M., & Gao, J. (2010). Adapting boosting for information retrieval measures. Information Retrieval, 13(3), 254–270.
Article
Google Scholar
Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., et al. (2016). Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:160908144.
Xia, L., Xu, J., Lan, Y., Guo, J., & Cheng, X. (2015). Learning maximal marginal relevance model via directly optimizing diversity evaluation measures. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval (pp. 113–122). ACM.
Xia, L., Xu, J., Lan, Y., Guo, J., & Cheng, X. (2016). Modeling document novelty with neural tensor network for search result diversification. In Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval, Pisa, Italy (pp. 395–404).
Xu, C., Bai, Y., Bian, J., Gao, B., Wang, G., Liu, X., et al. (2014). Rc-net: A general framework for incorporating knowledge into word representations. In Proceedings of the 23rd ACM international conference on conference on information and knowledge management (pp. 1219–1228). ACM.
Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.C., Salakhutdinov, R., et al. (2015). Show, attend and tell: Neural image caption generation with visual attention. CoRR arXiv:1502.03044.
Yan, R., Song, Y., & Wu, H. (2016) Learning to respond with deep neural networks for retrieval-based human–computer conversation system. In Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval (pp. 55–64). ACM.
Yang, J., Stones, R., Wang, G., & Liu, X. (2016a). Selective term proximity scoring via BP-ANN. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Yang, L., Ai, Q., Guo, J., & Croft, W. B. (2016b). aNMM: Ranking short answer texts with attention-based neural matching model. In The 25th ACM international conference on information and knowledge management, Indianapolis, United States.
Yang, X., Macdonald, C., & Ounis, I. (2016c). Using word embeddings in twitter election classification. In ACM SIGIR workshop on neural information retrieval (Neu-IR).
Ye, X., Qi, Z., & Massey, D. (2015). Learning relevance from click data via neural network based similarity models. In 2015 IEEE international conference on big data (big data) (pp. 801–806). IEEE.
Ye, X., Shen, H., Ma, X., Bunescu, R., & Liu, C. (2016). From word embeddings to document similarities for improved information retrieval in software engineering. In Proceedings of the 38th international conference on software engineering (pp. 404–415). ACM.
Yi, X., & Allan, J. (2009). A comparative study of utilizing topic models for information retrieval. In European conference on information retrieval (pp. 29–41). Springer.
Yu, D., & Deng, L. (2011). Deep learning and its applications to signal and information processing. IEEE Signal Processing Magazine, 28(1), 145–154.
Article
Google Scholar
Yu, L., Hermann, K. M., Blunsom, P., & Pulman, S. (2014). Deep learning for answer sentence selection. arXiv preprint arXiv:14121632.
Zamani, H., & Croft, W. B. (2016a). Embedding-based query language models. In Proceedings of the 2016 ACM international conference on the theory of information retrieval (pp. 147–156).
Zamani, H., & Croft, W. B. (2016b). Estimating embedding vectors for queries. In Proceedings of the 2016 ACM on international conference on the theory of information retrieval (pp. 123–132). ACM.
Zhai, S., Chang, K., Zhang, R., & Zhang, Z. (2016a). Attention based recurrent neural networks for online advertising. In Proceedings of the 25th international conference companion on world wide web, international world wide web conferences steering committee, Republic and Canton of Geneva, Switzerland, WWW’16 Companion (pp. 141–142).
Zhai, S., Chang, K., Zhang, R., & Zhang, Z. M. (2016b). Deepintent: Learning attentions for online advertising with recurrent neural networks. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD’16 (pp. 1295–1304).
Zhang, Q., Kang, J., Qian, J., & Huang, X. (2014). Continuous word embeddings for detecting local text reuses at the semantic level. In Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval (pp. 797–806). ACM.
Zhang, W., Du, T., & Wang, J. (2016a). Deep learning over multi-field categorical data. In European conference on information retrieval (pp. 45–57). Springer.
Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. In Advances in neural information processing systems (pp. 649–657).
Zhang, Y., & Wallace, B. (2015). A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. arXiv preprint arXiv:151003820.
Zhang, Y., Roller, S., & Wallace, B. C. (2016b). MGNC-CNN: A simple approach to exploiting multiple word embeddings for sentence classification. In Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: Human language technologies, association for computational linguistics, San Diego, California (pp. 1522–1527).
Zhang, Y., Lease, M., & Wallace, B. C. (2017). Exploiting domain knowledge via grouped weight sharing with application to text categorization. arXiv preprint arXiv:170202535.
Zheng, G., & Callan, J. (2015). Learning to reweight terms with distributed representations. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, ACM, New York, NY, USA, SIGIR’15 (pp. 575–584).
Zhou, G., He, T., Zhao, J., & Hu, P. (2015). Learning continuous word embedding with metadata for question retrieval in community question answering. In Proceedings of ACL (pp. 250–259).
Zhu, Y., Lan, Y., Guo, J., Cheng, X., & Niu, S. (2014). Learning for search result diversification. In Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval (pp. 293–302). ACM.
Zuccon, G., Koopman, B., Bruza, P., & Azzopardi, L. (2015). Integrating and evaluating neural word embeddings in information retrieval. In Proceedings of the 20th Australasian document computing symposium (p. 12). ACM.