Skip to main content
Log in

Structural Defects and Electronic Properties of TiS2 Nanotubes

  • Published:
Inorganic Materials Aims and scope

Abstract

Structural models are described for three groups of structural defects in TiS2 nanotubes: those which influence the stoichiometry of nanotubes, the local atomic configuration of their walls, and their local morphology (convex or concave walls). Tight-binding band-structure calculations are used to evaluate the energy and electronic properties of “ideal” and imperfect TiS2 nanotubes. The results suggest that the energetically favored defects are those which increase the inner volume of the tubes. In contrast to ideal TiS2 nanotubes, which are all semiconductors, the tubes containing any of the structural defects considered here have metal-like conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Iijima, S., Helical Microtubules of Graphitic Carbon, Nature (London), 1991, vol. 354, pp. 56–58.

    Article  CAS  ISI  Google Scholar 

  2. Tanaka, K., Yamabe, T., and Fuku, K., The Science and Technology of Carbon Nanotubes, Oxford: Elsevier, 1999.

    Google Scholar 

  3. Harris, P.J.F., Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge: Cambridge Univ. Press, 1999.

    Google Scholar 

  4. Ivanovskii, A.L., Kvantovaya khimiya v materialovedenii. Nanotubulyarnye formy veshchestva (Quantum Chemistry in Materials Science: Nanotubular Materials), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1999.

    Google Scholar 

  5. Iijima, S., Carbon Nanotubes: Past, Present, and Future, Physica B (Amsterdam), 2002, vol. 323, no.1, pp. 1–5.

    Article  CAS  ISI  Google Scholar 

  6. Endo, M., Hayashi, T., Kim, Y., et al., Applications of Carbon Nanotubes in the Twenty-First Century, Philos. Trans. R. Soc. London A, 2004, vol. 362, pp. 2223–2238.

    CAS  Google Scholar 

  7. Tenne, R. and Zettl, A.K., Nanotubes from Inorganic Materials, Top. Appl. Phys., 2001, vol. 80, pp. 81–112.

    CAS  Google Scholar 

  8. Tenne, R., Inorganic Nanotubes and Fullerene-like Materials, Chem.-Eur. J., 2002, vol. 8, no.23, pp. 5297–5304.

    Article  Google Scholar 

  9. Ivanovskii, A.L., Noncarbon Nanotubes: Synthesis and Modeling, Usp. Khim., 2002, vol. 71, no.3, pp. 203–224.

    Google Scholar 

  10. Zakharova, G.S., Enyashin, A.N., Ivanovskaya, V.V., et al., Titanium and vanadium Oxide Nanotubes: Synthesis and Modeling, Inzh. Fiz., 2003, no. 5, pp. 19–41.

  11. Tenne, R. and Rao, C.N.R., Inorganic Nanotubes, Philos. Trans. R. Soc. London A, 2004, vol. 362, pp. 2099–2125.

    CAS  Google Scholar 

  12. Chen, J., Li, S.-L., Tao, Z.-L., et al., Titanium Disulfide Nanotubes as Hydrogen-Storage Materials, J. Am. Chem., Soc., 2003, vol. 125, pp. 5284–5285.

    CAS  Google Scholar 

  13. Chen, J., Tao, Z.-L., and Li, S.-L., Lithium Intercalation in Open-Ended TiS2 Nanotubes, Angew. Chem., Int. Ed., 2003, vol. 42, pp. 2147–2151.

    CAS  Google Scholar 

  14. Samsonov, G.V. and Vinitskii, I.M., Tugoplavkie soedineniya (Refractory Compounds), Moscow: Metallurgiya, 1976.

    Google Scholar 

  15. Kim, Y.S., Mizuno, M., Tanaka, I., and Adachi, H., Electronic Structure and Chemical Bonding of TiX2 (X = S, Se, and Te), Jpn. J. Appl. Phys., 1998, vol. 37, no.9A, pp. 4878–4883.

    CAS  Google Scholar 

  16. Sharma, S., Nautiyal, T., Singh, G.S., et al., Electronic Structure of 1T-TiS2, Phys. Rev., 1999, vol. 59, no.23, pp. 14833–14836.

    CAS  Google Scholar 

  17. Enyashin, A.N., Ivanovskaya, V.V., Makurin, Yu.N., and Ivanovskii, A.L., Structure and Electronic Spectrum of Fullerene-like Nanoclusters Based on Mo, Nb, Zr, and Sn Disulfides, Neorg. Mater., 2004, vol. 40, no.4, pp. 466–470 [Inorg. Mater. (Engl. Transl.), vol. 40, no. 4, pp. 395–399].

    Article  Google Scholar 

  18. Enyashin, A.N. and Ivanovskii, A.L., Electronic Structure of Fullerene-like Ti, Zr, Nb, and Mo Disulfide Nanoparticles Evaluated by Nonempirical Calculations, Zh. Neorg. Khim., 2004, vol. 49, no.10, pp. 1654–1658.

    CAS  Google Scholar 

  19. Hoffmann, R., Solids and Surfaces: A Chemist's View of Bonding in Extended Structures, New York: VCH, 1988.

    Google Scholar 

  20. Fang, C.M., de Groot, R.A., and Haas, C., Bulk and Surface Electronic Structure of 1T-TiS2 and 1T-TiSe2, Phys. Rev., 1997, vol. 56, no.8, pp. 4455–4463.

    CAS  Google Scholar 

  21. Ivanovskaya, V.V. and Seifert, G., Tubular Structures of Titanium Disulfide TiS2, Solid State Commun., 2004, vol. 130, pp. 175–180.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Neorganicheskie Materialy, Vol. 41, No. 10, 2005, pp. 1266–1271.

Original Russian Text Copyright © 2005 by Enyashin, Ivanovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enyashin, A.N., Ivanovskii, A.L. Structural Defects and Electronic Properties of TiS2 Nanotubes. Inorg Mater 41, 1118–1123 (2005). https://doi.org/10.1007/s10789-005-0270-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10789-005-0270-2

Keywords

Navigation