Skip to main content

Advertisement

Log in

Cell-free probiotic supernatant (CFS) treatment alleviates indomethacin-induced enterocolopathy in BALB/c mice by down-modulating inflammatory response and oxidative stress: potential alternative targeted treatment

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Probiotics and their metabolites appear to be a promising approach that targets both the intestinal inflammation and dysbiosis in bowel diseases. In this context, the emergence of the probiotic cell-free supernatant (CFS) has attracted more attention as a safe and targeted alternative therapy with reduced side effects. The use of nonsteroidal anti-inflammatory drugs (NSAIDs) can cause significant intestinal alterations and inflammation, leading to experimental enterocolopathy resembling Crohn disease. Therefore, we investigated the effect of CFS supplementation on the inflammation and the mucosal intestinal alterations induced by NSAIDs, indomethacin. In the current study, a murine model of intestinal inflammation was generated by the oral gavage (o.g) of indomethacin (10 mg/kg) to BALB/C mice. A group of mice treated with indomethacin was concomitantly treated orally by CFS for 5 days. The Body Health Condition index was monitored, and histological scores were evaluated. Moreover, oxidative and pro-inflammatory markers were assessed. Interestingly, we observed that CFS treatment attenuated the severity of the intestinal inflammation in our enterocolopathy model and resulted in the improvement of the clinical symptoms and the histopathological features. Notably, nitric oxide, tumor necrosis factor alpha, malondialdehyde, and myeloperoxidase levels were down-modulated by CFS supplementation. Concomitantly, an attenuation of NF-κB p65, iNOS, COX2 expression in the ileum and the colon was reported. Collectively, our data suggest that CFS treatment has a beneficial effect in experimental enterocolopathy model and could constitute a good therapeutic candidate for alleviating inflammatory responses and to maintain mucosal homeostasis during chronic and severe conditions of intestinal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

Download references

Acknowledgements

The authors acknowledge the technical staff of Anatomic Pathology service (Beni messous hospital, Algiers, Algeria). They greatly thank the national agency of research development in health (ATRSS) which supported their project. We would like to thank Oussama Medjeber, Sarra Benkhelifa, Asma Belkadi, Kahina Kious and Mourad Hamdaoui for their help and their excellent technical assistance (USTHB, Algiers, Algeria).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chafia Touil-Boukoffa.

Ethics declarations

Conflict of interest

The authors declare the absence of competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samer, A., Toumi, R., Soufli, I. et al. Cell-free probiotic supernatant (CFS) treatment alleviates indomethacin-induced enterocolopathy in BALB/c mice by down-modulating inflammatory response and oxidative stress: potential alternative targeted treatment. Inflammopharmacol 30, 1685–1703 (2022). https://doi.org/10.1007/s10787-022-00996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-022-00996-y

Keywords

Navigation