Skip to main content

Advertisement

Log in

Modulation of inflammatory pathways, medicinal uses and toxicities of Uvaria species: potential role in the prevention and treatment of inflammation

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

The therapeutic efficacy of the contemporary anti-inflammatory drugs are well established; however, prolonged use of such can often lead to serious and life-threatening side effects. Natural product-based anti-inflammatory compounds with superior efficacy and minimum toxicity can serve as possible therapeutic alternatives in this scenario. Genus Uvaria is a part of Annonaceae family, while the majority of its species are widely distributed in tropical rain forest regions of South East Asia. Uvaria species have been used extensively used as traditional medicine for treating all sorts of inflammatory diseases including catarrhal inflammation, rheumatism, acute allergic reactions, hemorrhoids, inflammatory liver disease and inflamed joints. Phytochemical analysis of Uvaria species has revealed flavones, flavonoids, tannins, saponins, polyoxygenated cyclohexene and phenolic compounds as major phyto-constituents. This review is an attempt to highlight the anti-inflammatory activity of Uvaria species by conducting a critical appraisal of the published literature. The ethnopharmacological relevance of Uvaria species in the light of toxicological studies is also discussed herein. An extensive and relevant literature on anti-inflammatory activity of Uvaria species was collected from available books, journals and electronic databases including PubMed, ScienceDirect, Scopus, Proquest and Ovid. Extracts and isolates of Uvaria species exhibited significant anti-inflammatory activity through various mechanisms of action. 6,7-di-O-Methyl-baicalein, flexuvarol B, chrysin, (−)-zeylenol, 6-hydroxy-5,7-dimethoxy-flavone, and pinocembrin were the most potent anti-inflammatory compounds with comparable IC50 with positive controls. Therefore, it is suggested that further research should be carried out to determine the pharmacokinetics, pharmacodynamics and toxicity of these therapeutically significant compounds, to convert the pre-clinical results into clinical data for drug development and design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abu T, Rex-Ogbuku E, Idibiye K (2018) A review: secondary metabolites of Uvariachamae P. Beauv. (Annonaceae) and their biological activities. Int J Agric Environ Food Sci 2:177–185

    Google Scholar 

  • Achenbach H, Höhn M, Waibel R, Nkunya MH, Jonker SA, Muhie S (1997) Oxygenated pyrenes, their potential biosynthetic precursor and benzylated dihydroflavones from two African Uvaria species. Phytochem 44:359–364

    CAS  Google Scholar 

  • Adelodun VO et al (2013) Evaluation of antitrypanosomal and anti inflammatory activities of selected Nigerian medicinal plants in mice African. J Tradit Complement Altern Med 10:469–476

    Google Scholar 

  • Agrawal NK, Kant S (2014) Targeting inflammation in diabetes: Newer therapeutic options. World J Diabetes 5:697

    PubMed  PubMed Central  Google Scholar 

  • Ainslie JR (1937) List of plants used in native medicine in Nigeria. In imperial Forestry Institute, Oxford, p 42

    Google Scholar 

  • Akendengue B, Ngou-Milama E, Roblot F, Laurens A, Hocquemiller R, Grellier P, Frappier F (2002) Antiplasmodial activity of Uvaria klaineana. Planta Med 68:167–169

    CAS  PubMed  Google Scholar 

  • Akendengue B et al (2003) Acaricidal activity of Uvaria versicolor and Uvaria klaineana (Annonaceae). Phytother Res Int J Devoted Pharmacol Toxicol Eval Nat Prod Deriv 17:364–367

    CAS  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    CAS  PubMed  Google Scholar 

  • Akolade OR, Chinwe AS, Olalekan BT, Halima AT, Fatima AA, Emuejevoke TT, Herbert CA (2018) Haematological and genotoxicity evaluations of phytochemical compounds from n-Hexane Extract of Uvaria chamae stem on selected organs in mice. Ann Sci Technol 3:28–34

    Google Scholar 

  • Altindag O, Karakoc M, Kocyigit A, Celik H, Soran N (2007) Increased DNA damage and oxidative stress in patients with rheumatoid arthritis. Clin Biochem 40:167–171

    CAS  PubMed  Google Scholar 

  • Ansa P (2013) Partial purification of anti-tumor and antioxidant components from Uvaria Narum (Dunal) wall seed. RVS College of Pharmaceutical Sciences, Coimbatore

    Google Scholar 

  • Aprioku JS (2013) Pharmacology of free radicals and the impact of reactive oxygen species on the testis. J Reprod Infertil 14:158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491

    PubMed  PubMed Central  Google Scholar 

  • Attiq A, Jalil J, Husain K (2017) Annonaceae: breaking the wall of inflammation. Front Pharmacol 8:752

    PubMed  PubMed Central  Google Scholar 

  • Attiq A, Jalil J, Husain K, Ahmad W (2018) Raging the war against inflammation with natural products. Front Pharmacol 9:976

    PubMed  PubMed Central  Google Scholar 

  • Awale S et al (2012) Uvaridacols E-H, highly oxygenated antiausterity agents from Uvaria dac. J Nat Prod 75:1999–2002

    CAS  PubMed  Google Scholar 

  • Awodiran MO, Adepiti AO, Akinwunmi KF (2018) Assessment of the cytotoxicity and genotoxicity properties of Uvaria chamae P. Beauv (Annonaceae) and Morinda lucida Benth (Rubiaceae) in mice. Drug Chem Toxicol 41:232–237

    CAS  PubMed  Google Scholar 

  • Ayoola M, Balogun J, Famuyiwa F, Yeboah S, Famuyiwa S (2017) Isolation and characterization of 2-hydroxy-3-[4-hydroxyphenyl]-2-propenoic acid and 4-bromophenol from anti-diabetic extract of the root bark of Uvaria afzelii. South Afr J Bot 112:527–532

    CAS  Google Scholar 

  • Bamba B et al (2019) Anti-inflammatory activity of the aqueous macerate of leaves of Uvaria chamae (P. Beauv) (Annonaceae) on acute edema of rat paw induced by Carrageenan. Int J Pharmacogn Phytochem Res 11:44–48

    Google Scholar 

  • Bascones-Martinez A, Mattila R, Gomez-Font R, Meurman JH (2014) Immunomodulatory drugs: oral and systemic adverse effects. Med Oral Patol Oral Cir Bucal 19:e24

    PubMed  Google Scholar 

  • Bermejo A, Figadère B, Zafra-Polo M-C, Barrachina I, Estornell E, Cortes D (2005) Acetogenins from Annonaceae: recent progress in isolation, synthesis and mechanisms of action. Nat Prod Rep 22:269–303

    CAS  PubMed  Google Scholar 

  • Biondi-Zoccai GG, Abbate A, Liuzzo G, Biasucci LM (2003) Atherothrombosis, inflammation, and diabetes. J Am Coll Cardiol 41:1071–1077

    CAS  PubMed  Google Scholar 

  • Blanchard F, Duplomb L, Baud’huin M, Brounais B (2009) The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev 20:19–28

    CAS  PubMed  Google Scholar 

  • Bulgheroni A, Kinsner-Ovaskainen A, Hoffmann S, Hartung T, Prieto P (2009) Estimation of acute oral toxicity using the no observed adverse effect level (NOAEL) from the 28 day repeated dose toxicity studies in rats. Regul Toxicol Pharmacol 53:16–19

    PubMed  Google Scholar 

  • Buncharoen W, Saenphet K, Saenphet S, Thitaram C (2016) Uvariarufa Blume attenuates benign prostatic hyperplasia via inhibiting 5α-reductase and enhancing antioxidant status. J Ethnopharmacol 194:483–494

    PubMed  Google Scholar 

  • Burkill HM (1985) The useful plants of West tropical Africa. Vol. 1, 2nd ed. Royal Botanic Gardens, Kew, Richmond, pp 135–193, 217–241

  • Calderon-Montano JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M (2011) A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11:298–344

    CAS  PubMed  Google Scholar 

  • Carlson RP, Chang J, Lewis AJ (1985) Modulation of mouse ear edema by cyclooxygenase and lipoxygenase inhibitors and other pharmacologic agents. Agents Actions 17:197–204

    CAS  PubMed  Google Scholar 

  • Cedergren J, Forslund T, Sundqvist T, Skogh T (2007) Intracellular oxidative activation in synovial fluid neutrophils from patients with rheumatoid arthritis but not from other arthritis patients. J Rheumatol 34:2162–2170

    CAS  PubMed  Google Scholar 

  • Chaudhuri S, Banerjee A, Basu K, Sengupta B, Sengupta PK (2007) Interaction of flavonoids with red blood cell membrane lipids and proteins: antioxidant and antihemolytic effects. Int J Biol Macromol 41:42–48

    CAS  PubMed  Google Scholar 

  • Chen Y, Chen RY (1996) Six acetogenins from Uvaria tonkinesis. Phytochemistry 43:793–801

    CAS  Google Scholar 

  • Christophe W (2006) Medicinal plants of the Asia-Paciic: drugs for the future? World Scientific, Singapore

    Google Scholar 

  • Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63

    CAS  PubMed  Google Scholar 

  • Dąbrowski A, Konturek SJ, Konturek JW, Gabryelewicz A (1999) Role of oxidative stress in the pathogenesis of caerulein-induced acute pancreatitis. Eur J Pharmacol 377:1–11

    PubMed  Google Scholar 

  • Dai Y et al (2011) Antiproliferative acetogenins from a Uvaria sp. from the Madagascar dry forest. J Nat Prod 75:479–483

    PubMed  PubMed Central  Google Scholar 

  • Dai Y et al (2012) Antiproliferative acetogenins from a Uvaria sp. from the Madagascar dry forest. J Nat Prod 75:479–483

    CAS  PubMed  Google Scholar 

  • Dakora FD (1995) Plant flavonoids: biological molecules for useful exploitation. Funct Plant Biol 22:87–99

    CAS  Google Scholar 

  • Dalziel JM, Hutchinson J (1948) The useful plants of west tropical Africa: being an appendix to the Flora of west tropical Africa, by J. Hutchinson and JM Dalziel. Published under the authority of the Secretary of State for the Colonies by the Crown Agents for the Colonies, London

  • De Sousa OV, Vieira GD-V, De Pinho JdJR, Yamamoto CH, Alves MS (2010) Antinociceptive and anti-inflammatory activities of the ethanol extract of Annona muricata L leaves in animal models. Int J Mol Sci 11:2067–2078

    PubMed  PubMed Central  Google Scholar 

  • Derosa G et al (2011) Acarbose actions on insulin resistance and inflammatory parameters during an oral fat load. Eur J Pharmacol 651:240–250

    CAS  PubMed  Google Scholar 

  • Dhaou BBB, Boussema F, Aydi Z, Baili L, Tira H, Rokbani L (2012) Corticoid-associated complications in elderly. F1000Research 1

  • Di Rosa M (1972) Biological properties of carrageenan. J Pharm Pharmacol 24:89–102

    PubMed  Google Scholar 

  • Diaz A, Dickenson AH (1997) Blockade of spinal N-and P-type, but not L-type, calcium channels inhibits the excitability of rat dorsal horn neurones produced by subcutaneous formalin inflammation. Pain 69:93–100

    CAS  PubMed  Google Scholar 

  • Dubuisson D, Dennis SG (1977) The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4:161–174

    CAS  PubMed  Google Scholar 

  • Duraipandiyan V, Ayyanar M, Ignacimuthu S (2006) Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu India. BMC Complement Altern Med 6:35

    PubMed  PubMed Central  Google Scholar 

  • Ejeh S, Abalaka S, Usende I, Alimi Y, Oyelowo F (2019) Acute toxicity, oxidative stress response and clinicopathological changes in Wistar rats exposed to aqueous extract of Uvaria chamae leaves. Sci Afr 3:e00068

    Google Scholar 

  • Emordi JE, Agbaje EO, Oreagba IA, Iribhogbe OI (2018) Antidiabetic effects of the ethanolic root extract of Uvaria chamae P. Beauv (Annonaceae) in alloxan-induced diabetic rats: a potential alternative treatment for diabetes mellitus. Adv Pharmacol Sci 2018:1–13

    Google Scholar 

  • Fall D, Duval RA, Gleye C, Laurens A, Hocquemiller R (2004) Chamuvarinin, an acetogenin bearing a tetrahydropyran ring from the roots of Uvaria chamae. J Nat Prod 67:1041–1043

    CAS  PubMed  Google Scholar 

  • Fall D, Pimentel L, Champy P, Gleye C, Laurens A, Hocquemiller R (2006) A new adjacent bis-tetrahydrofuran annonaceous acetogenin from the seeds of Uvaria chamae. Planta Med 72:938–940

    CAS  PubMed  Google Scholar 

  • Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272:50–54

    CAS  PubMed  Google Scholar 

  • Fleischer TC, Waigh RD, Waterman PG (1998) A novel retrodihydrochalcone from the stem bark of Uvaria mocoli. Phytochemistry 47:1387–1391

    CAS  Google Scholar 

  • Formagio AS et al (2013) Composition and evaluation of the anti-inflammatory and anticancer activities of the essential oil from Annona sylvatica A. St.-Hil. J Med Food 16:20–25

    CAS  PubMed  Google Scholar 

  • Gautam R, Jachak SM (2009) Recent developments in anti-inflammatory natural products. Med Res Rev 29:767–820

    CAS  PubMed  Google Scholar 

  • Giri SS, Sen SS, Sukumaran V, Park SC (2016) Pinocembrin attenuates lipopolysaccharide-induced inflammatory responses in Labeo rohita macrophages via the suppression of the NF-κB signalling pathway. Fish Shellfish Immunol 56:459–466

    CAS  PubMed  Google Scholar 

  • González R, Ballester I, López-Posadas R, Suárez M, Zarzuelo A, Martinez-Augustin O, Medina FSD (2011) Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 51:331–362

    PubMed  Google Scholar 

  • Griffith B, Pendyala S, Hecker L, Lee PJ, Natarajan V, Thannickal VJ (2009) NOX enzymes and pulmonary disease. Antioxid Redox Signal 11:2505–2516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27:1–93

    CAS  Google Scholar 

  • Gutierrez-Orozco F, Failla ML (2013) Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence. Nutrients 5:3163–3183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2005) Free radicals and other reactive species in disease. In: eLS. Wiley, Chichester. https://doi.org/10.1038/npg.els.0003913

  • Hisham A, Pieters L, Claeys M, Van den Heuvel H, Esmans E, Dommisse R, Vlietinck A (1991) Acetogenins from root bark of Uvaria narum. Phytochemistry 30:2373–2377

    CAS  Google Scholar 

  • Hoai NT (2018) Antioxidant activity and acute toxicity of extract of Uvaria grandiflora Roxb. Ex Hornem—Annonaceae J Med Pharm—Hue Univ Med Pharm 8:95-99

  • Hofmeyr SA (2001) An interpretative introduction to the immune system. Design Princ Immune Syst Other Distrib Auton Syst 3:28–36

    Google Scholar 

  • Hsu Y-M et al (2016) 3-Methyl-4, 5-dihydro-oxepine, polyoxygenated seco-cyclohexenes and cyclohexenes from Uvaria flexuosa and their anti-inflammatory activity. Phytochemistry 122:184–192

    CAS  PubMed  Google Scholar 

  • Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–114

    CAS  PubMed  Google Scholar 

  • Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med Cell Longev 2016:7432797

    Google Scholar 

  • Ilangkovan M, Jantan I, Mesaik MA, Bukhari SNA (2015) Immunosuppressive effects of the standardized extract of Phyllanthus amarus on cellular immune responses in Wistar-Kyoto rats. Drug Design, Dev Ther 9:4917

    CAS  Google Scholar 

  • Indrawati L (2015) Effect of Annona Muricata Leaves on Colorectal Cancer Patients and Colorectal Cancer Cells. https://ClinicalTrials.gov/show/NCT02439580. NLM identifier: NCT02439580. Accessed 15 Jan 2020

  • Indrawati L, Ascobat P, Bela B, Abdullah M, Surono IS (2017) The effect of an ‘Annona muricata’ leaf extract on nutritional status and cytotoxicity in colorectal cancer: a randomized controlled trial. Asia Pac J Clin Nutr 26:606

    CAS  PubMed  Google Scholar 

  • Ita BN (2017) Antioxidant activity of Cnestis ferruginea and Uvaria chamae seed extracts. Br J Pharm Res 16(1):1–8

    Google Scholar 

  • Iyer SS, Cheng G (2012) Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol 32:23–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jadhav D (2008) Medicinal plants of India (Vol. 3). Scientific Publishers, Jodhpur

  • Jagir RP, Samuel RM, Ashok S, Prima D (2013) Attenuating effect of Uvaria narum (Dunal) wall. leaves on thioacetamide induced hepatic injury. Int Res J Pharm 4:214–217

    Google Scholar 

  • Jaipetch T et al (2019) Cytotoxic polyoxygenated cyclohexene derivatives from the aerial parts of Uvaria cherrevensis. Fitoterapia 137:104182

    CAS  PubMed  Google Scholar 

  • Jaiswal PK, Goel A, Mittal R (2015) Survivin: a molecular biomarker in cancer. Indian J Med Res 141:389

    PubMed  PubMed Central  Google Scholar 

  • Jalil J et al (2015) Inhibitory effect of triterpenoids from Dillenia serrata (Dilleniaceae) on prostaglandin E2 production and quantitative HPLC analysis of its koetjapic acid and betulinic acid contents. Molecules 20:3206–3220

    PubMed  PubMed Central  Google Scholar 

  • Ju-Ming L, Xiao-Hui G, Xiao-Feng L, Yan-Bing L, Li Y, Yao-Ming X (2012) Effects of Nateglinide on Postprandial Plasma Glucose Excursion and Metabolism of Lipids in Chinese Patients with Type 2 Diabetes: A 4-week, randomized, active-control, open-label, parallel-group, multicenter trial. Curr Med Res Opin (Epub ahead of print)

  • Kadiri M, Ojewumi A, Amuda A, Ogunderu O, Fadimu O (2014) Ethnobiological survey of indigenous flora used for management of catarrh and arthritis in Abeokuta. Int J Green Herb Chem 3:1690–1704

    Google Scholar 

  • Kanter M, Coskun O, Budancamanak M (2005) Hepatoprotective effects of Nigella sativa L and Urtica dioica L on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats. World J Gastroenterol WJG 11:6684

    PubMed  Google Scholar 

  • Karin M, Greten FR (2005) NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    CAS  PubMed  Google Scholar 

  • Kayode J, Ige O, Adetogo T, Igbakin A (2009) Conservation and biodiversity erosion in Ondo state, Nigeria:(3). Survey of plant barks used in native pharmaceutical extraction in Akoko region. Ethnobot Leafl 2009:13

    Google Scholar 

  • Kefaloyianni E, Gaitanaki C, Beis I (2006) ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-κB transactivation during oxidative stress in skeletal myoblasts. Cell Signal 18:2238–2251

    CAS  PubMed  Google Scholar 

  • Kennedy GL Jr, Ferenz RL, Burgess BA (1986) Estimation of acute oral toxicity in rates by determination of the approximate lethal dose rather than the LD50. J Appl Toxicol 6:145–148

    CAS  PubMed  Google Scholar 

  • Kokwaro JO (1976) Medicinal plants of East Africa. East African Literature Bureau, Nairobi

    Google Scholar 

  • Kornmann M, Danenberg KD, Arber N, Beger HG, Danenberg PV, Korc M (1999) Inhibition of cyclin D1 expression in human pancreatic cancer cells is associated with increased chemosensitivity and decreased expression of multiple chemoresistance genes. Cancer Res 59:3505–3511

    CAS  PubMed  Google Scholar 

  • Kumar V, Lemos M, Sharma M, Shriram V (2013) Antioxidant and DNA damage protecting activities of Eulophia nuda Lindl. Free Radic Antioxid 3:55–60

    CAS  Google Scholar 

  • Kumar R, Nair V, Singh S, Gupta YK (2015) In vivo antiarthritic activity of Rosa centifolia L flower extract. Ayu 36:341

    PubMed  PubMed Central  Google Scholar 

  • Lasswell WL Jr, Hufford CD (1977) Cytotoxic C-benzylated flavonoids from Uvaria chamae. J Org Chem 42:1295–1302

    CAS  PubMed  Google Scholar 

  • Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:1–9

    CAS  Google Scholar 

  • Macabeo APG et al (2014) Tetrahydroxanthene-1, 3 (2 H)-dione derivatives from Uvaria valderramensis. J Nat Prod 77:2711–2715

    PubMed  Google Scholar 

  • Macabeo APG, Flores AIG, Fernandez RAT, Budde S, Faderl C, Dahse H-M, Franzblau SG (2020) Antitubercular and cytotoxic polyoxygenated cyclohexane derivatives from Uvaria grandiflora. Nat Prod Res. https://doi.org/10.1080/14786419.2020.1741579

    Article  PubMed  Google Scholar 

  • Madubunyi I, Njoko C, Ibeh E, Chime A (1996) Antihepatotoxic and trypanocidal effects of the root bark extract of Uvaria chamae. Int J Pharm 34:34–40

    Google Scholar 

  • McChesney JD, Venkataraman SK, Henri JT (2007) Plant natural products: back to the future or into extinction? Phytochemistry 68:2015–2022

    CAS  PubMed  Google Scholar 

  • McLaughlin JL (2008) Paw paw and cancer: annonaceous acetogenins from discovery to commercial products. J Nat Prod 71:1311–1321

    CAS  PubMed  Google Scholar 

  • Meade C (2005) A new species of Uvaria (Annonaceae) from Southeast Asia. Adansonia 27:17–20

    Google Scholar 

  • Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140:771–776

    CAS  PubMed  Google Scholar 

  • Meesakul P, Pyne SG, Laphookhieo S (2018) Potent α-glucosidase inhibitory activity of compounds isolated from the leaf extracts of Uvaria hamiltonii. Nat Prod Res. https://doi.org/10.1080/14786419.2018.1538996

    Article  PubMed  Google Scholar 

  • Middleton E (1998) Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 439:175–182

    CAS  PubMed  Google Scholar 

  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monon K, Abdoulaye T, Karamoko O, Adama C (2015) Phytochemical composition, antioxidant and antibacterial activities of root of Uvaria chamae P. Beauv. (Annonaceae) used in treatment of dysentery in North of Côte d’Ivoire. Int J Pharma Phytochem Res 7:1047–1053

    Google Scholar 

  • Moriyasu M et al (2011) Chemical studies on the roots of Uvaria welwitschii. J Nat Med 65:313–321

    CAS  PubMed  Google Scholar 

  • Moriyasu M et al (2012) Pyrenes and pyrendiones from Uvaria lucida. J Nat Med 66:453–458

    CAS  PubMed  Google Scholar 

  • Nakatani N, Ichimaru M, Moriyasu M, Kato A (2005) Induction of apoptosis in human promyelocytic leukemia cell line HL-60 by C-benzylated dihydrochalcones, uvaretin, isouvaretin and diuvaretin. Biol Pharm Bull 28:83–86

    CAS  PubMed  Google Scholar 

  • Nanakorn W (1998) Queen sirikit botanic garden, 5th edn. Printing House, Bangkok

    Google Scholar 

  • Nguyen PH, Zhao BT, Kim O, Lee JH, Choi JS, Min BS, Woo MH (2016) Anti-inflammatory terpenylated coumarins from the leaves of Zanthoxylum schinifolium with α-glucosidase inhibitory activity. J Nat Med 70:276

    CAS  PubMed  Google Scholar 

  • Nkunya MH, Waibel R, Achenbach H (1993) Three flavonoids from the stem bark of the antimalarial Uvaria dependens. Phytochemistry 34:853–856

    CAS  Google Scholar 

  • Oberlies NH, Croy VL, Harrison ML, McLaughlin JL (1997) The Annonaceous acetogenin bullatacin is cytotoxic against multidrug-resistant human mammary adenocarcinoma cells. Cancer Lett 115:73–79

    CAS  PubMed  Google Scholar 

  • Odugbemi T (2008) A textbook of medicinal plants from Nigeria. University of Lagos Press, Lagos

    Google Scholar 

  • Oeckinghaus A, Ghosh S (2009) The NF-κB family of transcription factors and its regulation. Cold Spring Harbor Perspect Biol 1:a000034

    Google Scholar 

  • Ofeimun J, Eze G, Okirika O, Uanseoje S (2013) Evaluation of the Hepatoprotective effect of the methanol extract of the root of Uvaria afzelii (Annonaceae). J Appl Pharma Sci 3:125–129

    Google Scholar 

  • Okorie DA (1977) New benzyldihydrochalcones from Uvaria chamae. Phytochemistry 16:1591–1594

    CAS  Google Scholar 

  • Okwu DE, Iroabuchi F (2009) Phytochemical composition and biological activities of Uvaria chamae and Clerodendoron splendens. J Chem 6:553–560

    CAS  Google Scholar 

  • Oliver-Bever B (1986) Medicinal plants in tropical West Africa. University Press, Cambridge

    Google Scholar 

  • Oliver-Bever B (1989) Medicinal plants in tropical West Africa. Cambridge Uni, Cambridge

    Google Scholar 

  • Oliver-Bever B (1960) Medicinal plants in Nigeria. Nigerian College of arts. Sci Technol 21(37):52–53

    Google Scholar 

  • Olsen NJ, Stein CM (2004) New drugs for rheumatoid arthritis. N Engl J Med 350:2167–2179

    CAS  PubMed  Google Scholar 

  • Oltersdorf T et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    CAS  PubMed  Google Scholar 

  • Olumese FE, Onoagbe IO (2019) Proximate analysis and phytochemical composition of Uvaria chamae root. NISEB J 17

  • Olumese F, Onoagbe I, Eze G, Omoruyi F (2016) Safety assessment of Uvariachamae root extract: acute and subchronic toxicity studies. J Afr Assoc Physiol Sci 4:53–60

    Google Scholar 

  • Olumese FE, Onoagbe IO, Eze GI, Omoruyi FO (2018) Subchronic toxicity study of ethanolic extract of Uvaria chamae root in rats. Trop J Pharm Res 17:831–836

    CAS  Google Scholar 

  • Omajali J, Hussaini J, Omale J (2011) Cytotoxicity and anti-inflammatory studies on Uvaria chamae. J Pharmacol Toxicol 2:1–9

    Google Scholar 

  • Omoruyi SI, Joan MI, Bijou EA, Irobodu MO (2014) Uvariaafzelii root extract protects the liver against damage caused by carbon tetrachloride ingestion. J Exp Clin Anat 13:40

    Google Scholar 

  • Omose OJ, Ikechi EG, Marvin OO (2013) Evaluation of the hepatoprotective effect of the methanol extract of the root of Uvaria afzelii (Annonaceae). J Appl Pharm Sci 3:125

    Google Scholar 

  • Osonoi T et al (2010) The α-glucosidase inhibitor miglitol decreases glucose fluctuations and inflammatory cytokine gene expression in peripheral leukocytes of Japanese patients with type 2 diabetes mellitus. Metabolism 59:1816–1822

    CAS  PubMed  Google Scholar 

  • Parmar V, Tyagi O, Malhotra A, Singh S, Bisht K, Jain R (1994) Novel constituents of Uvaria species. Nat Prod Rep 11:219–224

    CAS  PubMed  Google Scholar 

  • Phonkerd N (2012) Acetogenins from the Annonaceae family and their biological activity. Khon Kaen Univ Sci J 42:700–717

    Google Scholar 

  • Popoola TD, Awodele O, Omisanya A, Obi N, Umezinwa C, Fatokun AA (2016) Three indigenous plants used in anti-cancer remedies, Garcinia kola Heckel (stem bark), Uvaria chamae P. Beauv. (root) and Olax subscorpioidea Oliv. (root) show analgesic and anti-inflammatory activities in animal models. J Ethnopharmacol 194:440–449

    PubMed  Google Scholar 

  • Proença C et al (2017) α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. J Enzym Inhib Med Chem 32:1216–1228

    Google Scholar 

  • Pushpavalli G, Kalaiarasi P, Veeramani C, Pugalendi KV (2010) Effect of chrysin on hepatoprotective and antioxidant status in d-galactosamine-induced hepatitis in rats. Eur J Pharmacol 631:36–41

    CAS  PubMed  Google Scholar 

  • Qi F et al (2011) Bufalin and cinobufagin induce apoptosis of human hepatocellular carcinoma cells via Fas-and mitochondria-mediated pathways. Cancer Sci 102:951–958

    CAS  PubMed  Google Scholar 

  • Qian J-Q, Sun P, Pan Z-Y, Fang Z-Z (2015) Annonaceous acetogenins reverses drug resistance of human hepatocellular carcinoma BEL-7402/5-FU and HepG2/ADM cell lines. Int J Clin Exp Pathol 8:11934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasul A, Millimouno FM, Ali Eltayb W, Ali M, Li J, Li X (2013) Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. BioMed Res Int

  • Raynaud S, Fourneau C, Hocquemiller R, Sévenet T, Hadi HA, Cavé A (1997) Acetogenins from the bark of Uvariapauci-ovulata. Phytochemistry 46:321–326

    CAS  Google Scholar 

  • Reto M, Almeida C, Rocha J, Sepodes B, Figueira M-E (2014) Green tea (Camellia sinensis): hypocholesterolemic effects in humans and anti-Inflammatory effects in animals. Food Nutr Sci 5:2185

    Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biol Med 49:1603–1616

    CAS  Google Scholar 

  • Rindfleisch JA, Muller D (2005) Diagnosis and management of rheumatoid arthritis. Am Fam Physician 72:1037–1047

    PubMed  Google Scholar 

  • Rocha S, Martin AM, Meek DW, Perkins ND (2003) p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-κB subunit with histone deacetylase 1. Mol Cell Biol 23:4713–4727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosandy AR et al (2013) Isolation and characterization of compounds from the stem bark of Uvariarufa (Annonaceae). Malays J Anal Sci 17:50–58

    Google Scholar 

  • Rudovich NN, Weickert MO, Pivovarova O, Bernigau W, Pfeiffer AF (2011) Effects of acarbose treatment on markers of insulin sensitivity and systemic inflammation. Diabetes Technol Therapeutics 13:615–623

    CAS  Google Scholar 

  • Saadawi S, Jalil J, Jasamai M, Jantan I (2012) Inhibitory effects of acetylmelodorinol, chrysin and polycarpol from Mitrella kentii on prostaglandin E2 and Thromboxane B2 production and platelet activating factor receptor binding. Molecules 17:4824–4835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki S, Maruta K, Naito H, Maemura R, Kawahara E, Maeda M (1998) In vitro antitumor activities of new synthetic bistetrahydrofuran derivatives as analogs of annonaceous acetogenins. Chem Pharm Bull 46:154–158

    CAS  Google Scholar 

  • Scheen A, Esser N, Paquot N (2015) Antidiabetic agents: potential anti-inflammatory activity beyond glucose control. Diabetes Metab 41:183–194

    CAS  PubMed  Google Scholar 

  • Seangphakdee P et al (2013) Anti-inflammatory and anticancer activities of (–)-zeylenol from stems of Uvariagrandiflora. ScienceAsia 39:610–614

    CAS  Google Scholar 

  • Seito LN, Sforcin JM, Bastos JK, Di Stasi LC (2015) Zeyheria montana Mart. (B ignoniaceae) as source of antioxidant and immunomodulatory compounds with beneficial effects on intestinal inflammation. J Pharm Pharmacol 67:597–604

    CAS  PubMed  Google Scholar 

  • Seukep AJ, Noumedem JAK, Djeussi DE, Kuete V (2014) Genotoxicity and teratogenicity of African medicinal plants. Toxicol Surv Afr Med Plants 9:235–275

    Google Scholar 

  • Smitha KR (2018) Studies on the biological properties of selected Uvaria species with emphasis on anticancer activity. University of Calicut, Dissertation

  • Smitha KR, Ansa PU, Babu TD, Achuthan CR (2018) In vitro cytotoxic and antiproliferative activities of UvariaNarum Seed Oil (UNSO). Int J Adv Res 6:912–916

    Google Scholar 

  • Soehnlein O, Lindbom L, Weber C (2009) Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood 114:4613–4623

    CAS  PubMed  Google Scholar 

  • Sommermann TG, O'Neill K, Plas DR, Cahir-McFarland E (2011) IKKβ and NF-κB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1. Cancer Res 71:7291–7300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soromou LW et al (2012) vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. Int Immunopharmacol 14:66–74

    CAS  PubMed  Google Scholar 

  • Srichaikul B, Samappito S, Bakker G, Dejchai S, Boonsong K, Thongkong A, Japa S (2012) The therapeutic and clinical drug review of Thai traditional herbal remedies extracted from ancient Thai medicinal manuscript volume no 3 of palm leaf scriptures. Adv Nat Sci 5:29–36

    Google Scholar 

  • Suba V, Murugesan T, Kumaravelrajan R, Mandal SC, Saha B (2005) Antiinflammatory, analgesic and antiperoxidative efficacy of Barleria lupulina Lindl. extract. Phytother Res Int J Devoted Pharmacol Toxicol Eval Nat Prod Deriv 19:695–699

    CAS  Google Scholar 

  • Sudheer AR, Chandran K, Marimuthu S, Menon VP (2005) Ferulic acid modulates altered lipid profiles and prooxidant/antioxidant status in circulation during nicotine-induced toxicity: a dose-dependent study. Toxicol Mech Methods 15:375–381

    CAS  PubMed  Google Scholar 

  • Suthiphasilp V, Maneerat W, Andersen RJ, Patrick BO, Phukhatmuen P, Pyne SG, Laphookhieo S (2019) Uvarialuridols AC, three new polyoxygenated cyclohexenes from the twig and leaf extracts of Uvaria lurida. Fitoterapia 138:104340

    CAS  PubMed  Google Scholar 

  • Thomas PS, Essien EE (2020) Antiglycation, antioxidant, and cytotoxic activities of Uvaria chamae root and essential oil composition. Nat Prod Res 34:880–883

    CAS  PubMed  Google Scholar 

  • Tian B-p et al (2017) Bcl-2 inhibitors reduce steroid-insensitive airway inflammation. J Allergy Clin Immunol 140:418–430

    CAS  PubMed  Google Scholar 

  • Tsai Y-F et al (2017) 6-Hydroxy-5, 7-dimethoxy-flavone suppresses the neutrophil respiratory burst via selective PDE4 inhibition to ameliorate acute lung injury. Free Radic Biol Med 106:379–392

    CAS  PubMed  Google Scholar 

  • Vazquez E et al (2015) Systemic changes following carrageenan-induced paw inflammation in rats. Inflamm Res 64:333–342

    CAS  PubMed  Google Scholar 

  • Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390:350–351

    CAS  PubMed  Google Scholar 

  • Wadekar RR, Patil KS (2014) Hepatoprotective activity of Uvaria narum in paracetamol-induced hepatic damage in rats: a biochemical and histopathological evaluation. Int J Pharmacogn 1:119–129

    CAS  Google Scholar 

  • Wallace JL, Bak A, McKnight W, Asfaha S, Sharkey KA, MacNaughton WK (1998) Cyclooxygenase 1 contributes to inflammatory responses in rats and mice: implications for gastrointestinal toxicity. Gastroenterology 115:101–109

    CAS  PubMed  Google Scholar 

  • Walum E (1998) Acute oral toxicity. Environ Health Perspect 106:497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warrier PK, Nambiar VPK, Ramankutty C (1996) Indian medicinal plants: a compendium of 500 species. Orient longman, Hyderabad

    Google Scholar 

  • Weisberg SP, Leibel R, Tortoriello DV (2008) Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 149:3549–3558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whelton A, Watson AJ (1998) Nonsteroidal anti-inflammatory drugs: Effects on kidney function. In: De Broe ME, Porter GA, Bennett WM, Verpooten GA (eds) Clinical Nephrotoxins. Springer, Dordrecht, pp 203–216

    Google Scholar 

  • White M (1999) Mediators of inflammation and the inflammatory process. J Allergy Clin Immunol 103:S378–S381

    CAS  PubMed  Google Scholar 

  • Williamson JS, Wyandt CM (1999) The herbal generation: legal and regulatory considerations. Drug Topics 19:101–110

    Google Scholar 

  • Wolfreys K, Oliveira DB (1997) Alterations in intracellular reactive oxygen species generation and redox potential modulate mast cell function. Eur J Immunol 27:297–306

    CAS  PubMed  Google Scholar 

  • Yang R et al (2016) IL-6 promotes the differentiation of a subset of naive CD8+ T cells into IL-21–producing B helper CD8+ T cells. J Exp Med 213:2281–2291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao LJ, Jalil J, Attiq A, Hui CC, Zakaria NA (2019) The medicinal uses, toxicities and anti-inflammatory activity of Polyalthia species (Annonaceae). J Ethnopharmacol 229:303–325

    CAS  PubMed  Google Scholar 

  • Zhang J-M, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45:27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L (2010) Systematics and phylogenetics of Uvaria (Annonaceae): origin, dispersal and morphological diversification of a major palaeotropical lineage. The University of Hong Kong, Dissertation

  • Zhu X-F et al (2002) Involvement of caspase-3 activation in squamocin-induced apoptosis in leukemia cell line HL-60. Life Sci 70:1259–1269

    CAS  PubMed  Google Scholar 

  • Zirihi GN, Mambu L, Guédé-Guina F, Bodo B, Grellier P (2005) In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J Ethnopharmacol 98:281–285

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Kebangsaan Malaysia for the Grant GUP-2018-137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juriyati Jalil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalil, J., Attiq, A., Hui, C.C. et al. Modulation of inflammatory pathways, medicinal uses and toxicities of Uvaria species: potential role in the prevention and treatment of inflammation. Inflammopharmacol 28, 1195–1218 (2020). https://doi.org/10.1007/s10787-020-00734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-020-00734-2

Keywords

Navigation