Skip to main content
Log in

Identification of bioactive phenolics from Porana sinensis Hemsl. stem by UPLC-QTOF-MS/MS and the confirmation of anti-inflammatory indicators using LPS-induced RAW264.7 cells

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

To characterise bioactive phenolics and confirm anti-inflammatory indicators in Porana sinensis stem, 23 phenolics were identified by UPLC-QTOF-MS/MS from crude extract (CE) prepared optimally with 80% methanol. Further fractionalisation using D101 macroporous resin resulted in predominant enrichment of total phenols and flavonoids into Fr.II. Correspondingly, the bioactive components-enriched Fr.II exhibited the lowest IC50 for scavenging DPPH and ABTS and the highest oxygen radical absorbance capacity or ORAC followed by Fractions Fr.I + Fr.II, CE and Fr.I, implying that certain phenolics possessing lower antioxidant activity completely remained in CE. Anti-inflammatory tests with LPS-stimulated RAW264.7 cells showed that CE possessed the highest inhibition of NO-production followed by Fr.II and Fr.I, meaning that CE might contain compounds that expressed higher anti-inflammatory but lower antioxidant activities or possessed synergistic interactions but were not fractionated together. Quantitative determination of nine major phenolics revealed that caffeic acid and 3-, 4- and 5-caffeoylquinic acids were concentrated into Fr.I, whereas scopolin, scopoletin and 3,5-, 3,4- and 4,5-dicaffeoylquinic acids were enriched into Fr.II. Further experiments with three selected major phenolics reduced the proposed synergistic interactions. Anti-inflammatory tests of the nine major phenolics evidenced that caffeic acid and the six caffeoylquinic acids produced higher, and the three dicaffeoylquinic acids at 140 μΜ showed even more significant activities in suppressing NO-production and mRNA expression of iNOS, TNF-α, COX-2, and IL-6, suggesting that these three dicaffeoylquinic acids could be indicators of the anti-inflammatory potential of P. sinensis stem. These findings provided novel insights for potential use of P. sinensis or liana, as an important source of natural antioxidants, against inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

This research was financially supported by the China Special Fund for Forestry Research in the Public Interest (Grant No. 201504606).

Author information

Authors and Affiliations

Authors

Contributions

QX, LS, and YL designed the study, performed the research and drafted the manuscript. PY, KL, HF, LY, and XC participated in the experiments. YL provided the facilities and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Liwei Sun or Yujun Liu.

Ethics declarations

Conflict of interest

The authors declared that there were no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Q., Yin, P., Li, K. et al. Identification of bioactive phenolics from Porana sinensis Hemsl. stem by UPLC-QTOF-MS/MS and the confirmation of anti-inflammatory indicators using LPS-induced RAW264.7 cells. Inflammopharmacol 27, 1055–1069 (2019). https://doi.org/10.1007/s10787-018-00558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-00558-1

Keywords

Navigation