Skip to main content

Advertisement

Log in

Antioxidant, antiproliferative and anti-inflammatory effects of Glaucium flavum fractions enriched in phenolic compounds

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Glaucium flavum (Papaveraceae) is a halophyte which is known for its high importance in phytomedicine and ecology. In this work, phytochemical analysis, as well as antioxidant, antiproliferative and anti-inflammatory effects were investigated for EOH, EA and PE fractions of G. flavum shoots. Results showed that total polyphenol amounts were highest in EOH fraction (158.3 mg GAE/g DR) followed by EA and PE. This latter fraction was rich in flavonoids (128.43 mg CE/g DR), however EA produced more condensed tannins (19.83 mg CE/g DR) than other fractions. In addition, seven molecules (phenolics) have been identified: kaempferol, caffeic acid, catechin hydrate, syringic acid, chlorogenic acid, isoquercitrin, and trans-hydroxycinnamic acid. Concerning antioxidant effects, ethanol fraction was distinguished by a high total antioxidant activity (432.58 mg GAE/g DR), a lower iron reducing power (EC50 = 800 µg/ml), a capacity to inhibit the β-carotene bleaching (IC50 = 48.78 µg/ml), and an important antiradical activity (IC50 = 140 µg/ml). In addition, PE, EA and EOH fractions have strong antiproliferative effect against MCF-7 cells but with superiority of EA fraction (IC50 = 135 µg/ml). EA showed also a high anti-inflammatory effect with an amount of NO which is equal to around 29 and 20 µM/ml NO at 50 and 100 µg/ml, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aiyer HS, Warri AM, Woode DR, Hilakivi-Clarke L, Clarke R (2012) Influence of berry polyphenols on receptor signaling and cell-death pathways: implications for breast cancer prevention. J Agric Food Chem 60(23):5693–5708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arafa AM, Mohamed MES, Eldahmy SI (2016) The aerial parts of yellow horn poppy (Glaucium flavum Cr.) growing in Egypt: isoquinoline alkaloids and biological activities. J Pharm Sci Res 8(5):323–332

    CAS  Google Scholar 

  • Boulaaba M, Mkadmini K, Tsolmon S, Han J, Smaoui A, Kawada K, Ksouri R, Isoda H, Abdelly C (2013a) In vitro antiproliferative effect of Arthrocnemum indicum extracts on Caco-2 cancer cells through cell cycle control and related phenol LC-TOF-MS identification. Evid Based Complement Altern Med. https://doi.org/10.1155/2013/529375

    Article  Google Scholar 

  • Boulaaba M, Tsolmon S, Ksouri R, Han J, Kawada K, Smaoui A, Abdelly C, Isoda H (2013b) Anticancer effect of Tamarix gallica extracts on human colon cancer cells involves Erk1/2 and p38 action on G2/M cell cycle arrest. Cytotechnology 65:927–936

    Article  PubMed  PubMed Central  Google Scholar 

  • Bournine L, Bensalem S, Wauters J-N, Iguer-Ouada M, Maiza-Benabdesselam F, Bedjou F, Castronovo V, Bellahcène A, Tits M, Frédérich M (2013) Identification and quantification of the main active anticancer alkaloids from the root of Glaucium flavum. Int J Mol Sci 14:23533–23544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craft BD, Kerrihard AL, Amarowicz R, Pegg RB (2012) Phenol-based antioxidant and the in vitro methods used for their assessment. Compr Rev Food Sci Food Saf 11(2):148–173

    Article  CAS  Google Scholar 

  • Falleh H, Ksouri R, Medini F, Guyot S, Abdelly C, Magné C (2011) Antioxidant activity and phenolic composition of the medicinal and edible halophyte Mesembryanthemum edule L. Ind Crops Prod 34:1066–1071

    Article  CAS  Google Scholar 

  • Gallardo C, Jiménez L, García-Conesa M-T (2006) Hydroxycinnamic acid composition and in vitro antioxidant activity. Food Chem 99:455–463

    Article  CAS  Google Scholar 

  • Hagel JM, Mandal R, Han B, Han J, Dinsmore DR, Borchers CH, Wishart DS, Facchini PJ (2015) Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol 15:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada T, Yoshimura A (2002) Regulation of cytokine signalling and inflammation. Cytokine Growth Factor Rev 13:413–421

    Article  CAS  PubMed  Google Scholar 

  • Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW (2014) Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm Res 63:81–90

    Article  CAS  PubMed  Google Scholar 

  • Iacopini P, Baldi M, Storchi P, Sebastiani L (2008) Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J Food Compos Anal 21:589–598

    Article  CAS  Google Scholar 

  • Jung SH, Kim BJ, Lee EH, Osborne NN (2010) Isoquercitrin is the most effective antioxidant in the plant Thuja orientalis and able to counteract oxidative-induced damage to a transformed cell line (RGC-5 cells). Neurochem Int 57:713–721

    Article  CAS  PubMed  Google Scholar 

  • Kim EO, Min KJ, Kwon TK, Um BH, Moreau RA, Choi SW (2012) Anti-inflammatory activity of hydroxycinnamic acid derivatives isolated from corn bran in lipopolysaccharide-stimulated Raw 264.7 macrophages. Food Chem Toxicol 50:1309–1316

    Article  CAS  PubMed  Google Scholar 

  • Kirszberg C, Esquenazi D, Alviano CS, Rumjanek VM (2003) The effect of a catechin-rich extract of Cocos nucifera on lymphocytes proliferation. Phytother Res 17(9):1054–1058

    Article  CAS  PubMed  Google Scholar 

  • Li W, Du B, Wang T, Wang S, Zhang J (2009) Kaempferol induces apoptosis in human HCT116 colon cancer cells via the ataxia-telangiectasia mutated-p53 pathway with the involvement of p53 upregulated modulator of apoptosis. Chem Biol Inter 177:121–127

    Article  CAS  Google Scholar 

  • Liu J, Wu H, Zheng F, Liu W, Feng F, Xie N (2014) Chemical constituents of Meconopsis horridula and their simultaneous quantification by high-performance liquid chromatography coupled with tandem mass spectrometry. J Sep Sci 37:2513–2522

    Article  CAS  PubMed  Google Scholar 

  • Marinova EM, Toneva A, Yanishlieva N (2009) Comparison of the antioxidative properties of caffeic and chlorogenic acids. Food Chem 114:1498–1502

    Article  CAS  Google Scholar 

  • Maurya DK, Devasagayam TPA (2010) Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem Toxicol 48:3369–3373

    Article  CAS  PubMed  Google Scholar 

  • Oueslati S, Ksouri R, Falleh H, Pichette A, Abdelly C, Legault J (2012) Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem 132:943–947

    Article  CAS  Google Scholar 

  • Perez GRM (2001) Anti-inflammatory activity of compounds isolated from plants. Sci World 1:713–784

    Article  CAS  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safa O, Soltanipoor MA, Rastegar S, Kazemi M, Dehkordi KN, Ghannadi A (2013) An ethnobotanical survey on hormozgan province, Iran. Avicenna J Phytomed 3:64–81

    PubMed  PubMed Central  Google Scholar 

  • Schliemann W, Schneider B, Wray V, Schmidt J, Nimtz M, Porzel A, Böhm H (2006) Flavonols and an indole alkaloid skeleton bearing identical acylated glycosidic groups from yellow petals of Papaver nudicaule. Phytochem 67:191–201

    Article  CAS  Google Scholar 

  • Scott GAM (1963) Glaucium Flavum Crantz. J Ecol 51(3):743–754

    Article  Google Scholar 

  • Shan J, Fu J, Zhao Z, Kong X, Huang H, Luo L, Yin Z (2009) Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-kB and JNK/AP-1 activation. Int Immunopharmacol 9:1042–1048

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Fujimori T, Uchida I, Yamaguchi S, Takeda K (2001) A malonylated anthocyanin and flavonols in blue Meconopsis flowers. Phytochem 56(4):373–376

    Article  CAS  Google Scholar 

  • Tawaha K, Alali F, Gharaibeh M, Mohammad M, El-Elimat T (2007) Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem 104:1372–1378

    Article  CAS  Google Scholar 

  • Yagasaki K, Miura Y, Okauchi R, Furuse T (2000) Inhibitory effects of chlorogenic acid and its related compounds on the invasion of hepatoma cells in culture. Cytotechnology 33:229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F, Liang Q, Li H, Zhao G (2015) Solvent effects on phenolic content, composition, and antioxidant activity of extracts from florets of sunflower (Helianthus annuus L.). Ind Crops Prod 76:574–581

    Article  CAS  Google Scholar 

  • Ye JC, Hsiao MW, Hsieh CH, Wu WC, Hung YC, Chang WC (2010) Analysis of caffeic acid extraction from Ocimum gratissimum linn. by high performance liquid chromatography and its effects on a cervical cancer cell line. Taiwan J Obstet Gynecol 49(3):266–271

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research and by the Japanese JICA/JST Science and Technology Research Partnership for Sustainable Development Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mondher Boulaaba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulaaba, M., Kalai, F.Z., Dakhlaoui, S. et al. Antioxidant, antiproliferative and anti-inflammatory effects of Glaucium flavum fractions enriched in phenolic compounds. Med Chem Res 28, 1995–2001 (2019). https://doi.org/10.1007/s00044-019-02429-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02429-y

Keywords

Navigation