Skip to main content

Advertisement

Log in

Nrf2: a potential therapeutic target for diabetic neuropathy

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Different aspects involved in pathophysiology of diabetic neuropathy are related to inflammatory and apoptotic pathways. This article summarizes evidence that Nrf2 acts as a bridging link in various inflammatory and apoptotic pathways impacting progression of diabetic neuropathy. Nrf2 is involved in expression of various antioxidant proteins (such as detoxifying enzymes) via antioxidant response element (ARE) binding site. Under normal conditions, Nrf2 is inactive and remains in the cytosol. Hyperglycemia is a strong stimulus for oxidative stress and inflammation that downregulates the activity of Nrf2 through various neuroinflammatory pathways. Acute hyperglycemia increases the expression of Nrf2, but persistent hyperglycemia decreases its expression. This downregulation of Nrf2 causes various microvascular changes, which result in diabetic neuropathy. The key contribution of Nrf2 in progression of diabetic neuropathy has been summarized in the article. Despite involvement of Nrf2 in progression of diabetic neuropathy, targeting Nrf2 activators as a therapeutic potential will provide important new insights into the ways that influence treatment of diabetic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad R, Raina D, Meyer C, Kharbanda S, Kufe D (2006) Triterpenoid CDDO-Me blocks the NF-kappaB pathway by direct inhibition of IKKbeta on Cys-179. J Biol Chem 281:35764–35769

    Article  CAS  PubMed  Google Scholar 

  • Atia A, Abdullah A (2014) The Nrf2-Keap1 signalling pathway: Mechanisms of ARE transcription regulation in antioxidant cellular defence. Int J Pharm Tech Res 6:154–167

    CAS  Google Scholar 

  • Babu PS, Prabuseenivasan S, Ignacimuthu S (2007) Cinnamaldehyde—a potential antidiabetic agent. Phytomedicine 14:15–22

    Article  CAS  Google Scholar 

  • Bertelli AA, Das DK (2009) Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol 54:468–476

    Article  CAS  PubMed  Google Scholar 

  • Bhakkiyalakshmi E, Sireesh D, Rajaguru P, Paulmurugan R, Ramkumar KM (2015) The emerging role of redox-sensitive Nrf2–Keap1 pathway in diabetes. Pharmacol Res 91:104–114

    Article  CAS  PubMed  Google Scholar 

  • Bloom DA, Jaiswal AK (2003) Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem 278:44675–44682

    Article  CAS  PubMed  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  • Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85:705–717

    Article  CAS  PubMed  Google Scholar 

  • Cameron NE, Cotter MA (2008) Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets 9:60–67

    Article  CAS  PubMed  Google Scholar 

  • Choi BH, Kang KS, Kwak MK (2014) Effect of redox modulating NRF2 activators on chronic kidney disease. Molecules 19:12727–12759

    Article  PubMed  Google Scholar 

  • Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23:7198–7209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Haan JB (2011) Nrf2 activators as attractive therapeutics for diabetic nephropathy. Diabetes 60:2683–2684

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding M, Zhao J, Bowman L, Lu Y, Shi X (2010) Inhibition of AP-1 and MAPK signaling and activation of Nrf2/ARE pathway by quercitrin. Int J Oncol 36:59–67

    CAS  PubMed  Google Scholar 

  • Dinkova-Kostova AT et al (2005) Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc Natl Acad Sci U S A 102:4584–4589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Bassossy HM, Fahmy A, Badawy D (2011) Cinnamaldehyde protects from the hypertension associated with diabetes. Food Chem Toxicol 49:3007–3012

    Article  CAS  PubMed  Google Scholar 

  • Evcimen ND, King GL (2007) The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 55:498–510

    Article  PubMed  Google Scholar 

  • Fahey JW, Talalay P (1999) Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes. Food Chem Toxicol 37:973–979

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes S, Guzman-Beltran S, Medina-Campos ON, Pedraza-Chaverri J (2013) Curcumin pretreatment induces Nrf2 and an antioxidant response and prevents hemin-induced toxicity in primary cultures of cerebellar granule neurons of rats. Oxid Med Cell Longev 2013:801418

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Yu S, Zhang C, Kong AN (2015) Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med 88:337–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SC, Patchva S, Koh W, Aggarwal BB (2012) Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39:283–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He HJ, Wang GY, Gao Y, Ling WH, Yu ZW, Jin TR (2012) Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes 3:94–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland R, Fishbein JC (2010) Chemistry of the cysteine sensors in Kelch-like ECH-associated protein 1. Antioxid Redox Signal 13:1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong F, Freeman ML, Liebler DC (2005) Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol 18:1917–1926

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Nguyen T, Pickett CB (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277:42769–42774

    Article  CAS  PubMed  Google Scholar 

  • Huang TC, Chung YL, Wu ML, Chuang SM (2011) Cinnamaldehyde enhances Nrf2 nuclear translocation to upregulate phase II detoxifying enzyme expression in HepG2 cells. J Agric Food Chem 59:5164–5171

    Article  CAS  PubMed  Google Scholar 

  • Li W et al (2008) Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76:1485–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao JC et al (2012) Anti-inflammatory activities of Cinnamomum cassia constituents in vitro and in vivo. Evid Based Complement Alternat Med 2012:429320

    PubMed  PubMed Central  Google Scholar 

  • Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17:1232–1239

    Article  CAS  PubMed  Google Scholar 

  • Moi P, Chan K, Asunis I, Cao A, Kan YW (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A 91:9926–9930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Movahed A, Nabipour I, Lieben Louis X, Thandapilly SJ, Yu L, Kalantarhormozi M et al (2013) Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. Evid Based Complement Altern Med 2013:851267

    Article  Google Scholar 

  • Negi G, Kumar A, Sharma SS (2011) Nrf2 and NF-kappaB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Curr Neurovasc Res 8:294–304

    Article  CAS  PubMed  Google Scholar 

  • Negi G, Nakkina V, Kamble P, Sharma SS (2015) Heme oxygenase-1, a novel target for the treatment of diabetic complications: focus on diabetic peripheral neuropathy. Pharmacol Res 102:158–167

    Article  CAS  PubMed  Google Scholar 

  • Nioi P, Nguyen T, Sherrattm PJ, Pickett CB (2005) The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol Cell Biol 25:10895–10906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oates PJ (2008) Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets 9:14–36

    Article  CAS  PubMed  Google Scholar 

  • Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling. Biochim Biophys Acta 1812:719–731

    Article  CAS  PubMed  Google Scholar 

  • Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A (2011) SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31:1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rada P et al (2012) Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/β-TrCP axis. Mol Cell Biol 32:3486–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisman SA et al (2015) Topical application of RTA 408 lotion activates Nrf2 in human skin and is well-tolerated by healthy human volunteers. BMC Dermatol 15:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Rojo AI, Sagarra MR, Cuadrado A (2008) GSK-3β down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem 105:192–202

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EE (2015) Interplay between cytosolic disulfide reductase systems and the Nrf2/Keap1 pathway. Biochem Soc Trans 43:632–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakeel M (2015) Recent advances in understanding the role of oxidative stress in diabetic neuropathy. Diabetes Metab Syndr Clin Res Rev 9:373–378

    Article  Google Scholar 

  • Sharma SS, Kumar A, Kaundal RK (2008) Protective effects of 4-amino 1,8-naphthalimide, a poly (ADP-ribose) polymerase inhibitor in experimental diabetic neuropathy. Life Sci 82:570–576

    Article  CAS  PubMed  Google Scholar 

  • Song MY, Kim EK, Moon WS, Park JW, Kim HJ, So HS et al (2009) Sulforaphane protects against cytokine- and streptozotocin-induced beta-cell damage by suppressing the NF-kappaB pathway. Toxicol Appl Pharmacol 235:57–67

    Article  CAS  PubMed  Google Scholar 

  • Stefanson AL, Bakovic M (2014) Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients 6:3777–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Chin YE, Zhang DD (2009a) Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Mol Cell Biol 29:2658–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Huang Z, Zhang DD (2009b) Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One 4:e6588

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian R et al (2016) Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats. Eur J Pharmacol 771:84–92

    Article  CAS  PubMed  Google Scholar 

  • Tong KI, Kobayashi A, Katsuoka F, Yamamoto M (2006) Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem 387:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Trujillo J, Chirino YI, Molina-Jijon E et al (2013) Renoprotective effect of the antioxidant curcumin: recent findings. Redox Biol 1:1–9

    Article  Google Scholar 

  • Vincent AM, Edwards JL, Sadidi M, Feldman EL (2008) The antioxidant response as a drug target in diabetic neuropathy. Curr Drug Targets 9:94–100

    Article  CAS  PubMed  Google Scholar 

  • Wada R, Yagihashi S (2005) Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann N Y Acad Sci 1043:598–604

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sun W, Du B, Miao X, Bai Y, Xin Y et al (2013) Therapeutic effect of MG-132on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: roles of Nrf2 and NF-kappaB. Am J Physiol Heart Circ Physiol 304:H567–H578

    Article  CAS  PubMed  Google Scholar 

  • Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochem Soc Trans 43:621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wondrak GT, Cabello CM, Villeneuve NF, Zhang S, Ley S, Li Y et al (2008) Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free Radic Biol Med 45:385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Whitman SA, Wu W, Wondrak GT, Wong PK, Fang D et al (2011) Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 60:3055–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipper LM, Mulcahy RT (2000) Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes. Biochem Biophys Res Commun 278:484–492

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Department of science and technology (DST), (Grant SR/WOS-A/LS-1324/2014 dated 14.05.2015), New Delhi has been gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Ethics declarations

Conflict of interest

Authors declare that they do not have any competing financial interests. There is no conflict of interest between the authors to declare.

Disclosure

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mittal, R. Nrf2: a potential therapeutic target for diabetic neuropathy. Inflammopharmacol 25, 393–402 (2017). https://doi.org/10.1007/s10787-017-0339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-017-0339-y

Keywords

Navigation