Skip to main content
Log in

Rethinking public and private policies in Europe with the support of a industrial sustainability index

  • Original Paper
  • Published:
International Environmental Agreements: Politics, Law and Economics Aims and scope Submit manuscript

Abstract

The aim of this paper is to design a new index for obtaining a measure of sustainable performance in the industrial sector (SIPI). This approach allows to evaluate the green policy implemented by both government and enterprises and to underline the differences between their actions concerning the environmental, economic, political and social issues. The SIPI main structure has been created by using multi-criteria method in accordance with OECD procedure (2008). The methodology has been built for application to EU-28 countries. The findings produce both the acknowledgement of the success and the identification of the weaknesses of the subjects involved in the policymaking process, providing a support for future planning. Nevertheless, the methodology was formulated in such a way that it could be readapted in other countries or regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The country-specific table will be available upon request to the authors.

  2. The formula of this normalization technique is the following one for each variable \(\mathop z\nolimits_{i} = \frac{{x_{i} - \bar{x}}}{s}\).

  3. By using the followed formula \(s_{ij} = \frac{(Ij - Min\;I)}{Max\;I - Min\;I} * 100\) where Sij represents the standardized composite indicator for each jth case, Min I and Max I are the minimum and maximum values among ij indicators, respectively.

  4. Cypro is not considered because of unavailability of data.

  5. Each factor is characterized from the followed indicators:

    Factor 1: Emas, Patent applications to the EPO, Ecolabel, Eco-Industrial Parks, R&D Expenditure by Government, % GDP,

    Environmental incentives, Environmentally related ODA, % total ODA

    Factor 2 R&D Expenditure by Government, % GDP, Patent applications to the EPO, Actions in environmental audit, environmental certifications, % of companies, Product innovators, % of total firms, Environmental incentives, Innovations to increase recycling of waste, water or materials, % of total enterprises, Innovations in replacement of materials, % of total enterprises, Innovations to reduce CO2% of total enterprises, Innovations to reduce energy use, % of total enterprises Renewable energy public R&D budget, % total energy public RD&D

    Factor 3 R&D Expenditure by Government, % GDP, Product innovators, % of total firms, Environmentally related taxes, % GDP

    Factor 4 Emas, Ecolabel, Actions in environmental audit, environmental certifications, % of companies, Development of environment-related technologies, % all technologies, Environmentally related government R&D budget, % total government R&D

    Factor 5 Environmenal incentives, Product innovators, % of total firms, Development of environment-related technologies, % all technologies, Renewable energy public R&D budget, % total energy public R&D

    Factor 6 Ecolabel, R&D Expenditure by Government, % GDP.

  6. The final cluster centres show the average of each variable within the cluster, and help us to understand the features of variables belonging to each group.

References

  • Adams, R., Jeanrenaud, S., Bessant, J., Denyer, D., & Overy, P. (2016). Sustainability- oriented innovation: a systematic review. International Journal of Management Reviews, 18(2), 180–205. https://doi.org/10.1111/ijmr.12068.

    Article  Google Scholar 

  • Aghion, P., Dewatripont, M., Du, L., & Legros, A. H. P. (2015). Industrial policy and competition policy. In Nber Working Paper Series Industrial. https://doi.org/10.1016/0014-2921(90)90128-l.

  • Aiginger, K. (2014). Industrial Policy for a Sustainable Growth Path. In WIFO Working Papers, (13). https://doi.org/10.1093/acprof:oso/9780198706205.003.0019.

  • Aiginger, K. (2017). This can still be Europe’s Century. International Journal of Business and Economic Affairs, 2(3), 173–182.

    Google Scholar 

  • Aiginger, K. (2018). Political rebound effects as stumbling blocks for socio-ecological transition. American Journal of Business, Economics and Management, 6(1), 7–15.

    Google Scholar 

  • Altenburg, T., Assmann, C., Rodrik, D., Padilla, E., Ambec, S., Esposito, M., et al. (2017). Green industrial policy: Concept, policies, country experiences.

  • Altenburg, T., & Assmann, C. (Eds.). (2017). Green industrial policy. Concept, policies, country experiences. Geneva, Bonn: UN Environment; German Development Institute / Deutsches Institut für Entwicklungspolitk (DIE).

  • Antony, G. M., & Visweswara Rao, K. (2007). A composite index to explain variations in poverty, health, nutritional status and standard of living: Use of multivariate statistical methods. Public Health, 121(8), 578–587. https://doi.org/10.1016/j.puhe.2006.10.018.

    Article  CAS  Google Scholar 

  • Arbolino, R. (2013). Development policies in China: An analysis of the territorial imbalances. Studies in Fuzziness and Soft Computing (Vol. 305). https://doi.org/10.1007/978-3-642-35635-3-1.

  • Arbolino, R., De Simone, L., Carlucci, F., Yigitcanlar, T., & Ioppolo, G. (2018). Towards a sustainable industrial ecology: Implementation of a novel approach in the performance evaluation of Italian regions. Journal of Cleaner Production, 178, 220–236.

    Article  Google Scholar 

  • Armingeon, K., Isler, C., Knöpfel, L., Weisstanner, D., & Engler, S. (2016). Comparative Political Data Set 1960–2014. University of Bern, 1960–2014. http://www.cpds-data.org/index.php/data#Supplement.

  • Ayres, R. U., Campbell, C. J., Casten, T. R., Horne, P. J., Kümmel, R., Laitner, J. A., et al. (2013). Sustainability transition and economic growth enigma: Money or energy? Environmental Innovation and Societal Transitions, 9, 8–12. https://doi.org/10.1016/j.eist.2013.09.002.

    Article  Google Scholar 

  • Azapagic, A., & Perdan, S. (2000). Indicators of sustainable development for industry. Process Safety and Environmental Protection, 78(4), 243–261. https://doi.org/10.1205/095758200530763.

    Article  CAS  Google Scholar 

  • Bajo, M. (2016). Practical applications of principal component analysis in fixed income portfolio management (III): Relative value strategies… Aplicaciones prácticas del análisis de componentes principales en gestión de carteras de Renta Fija (III): Estrategias de, (November).

  • Barrera-Roldán, A., Saldívar, A., Ortiz, S., Rosales, P., Nava, M., Aguilar, S., et al. (2003). Industrial sustainability index. Advances in Ecological Sciences, 18, 337–346. https://www.scopus.com/inward/record.uri?eid=2-s2.0-2942735262&partnerID=40&md5=39fc1a89ab78c3c4792f472b937b1204.

  • Berkes, F., & Folke, C. (1998). Linking social and ecological systems for resilience and sustainability. Linking social and ecological systems: management practices and social mechanisms for building resilience, 1, 13–20.

    Google Scholar 

  • Bohringer, C., & Jochem, P. (2007). Measuring the immeasurable: A survey of sustainability indices. Ecological Economics, 63(1), 1–8.

    Article  Google Scholar 

  • Carayannis, E. G., Meissner, D., & Edelkina, A. (2017). Targeted innovation policy and practice intelligence (TIP2E): concepts and implications for theory, policy and practice. The Journal of Technology Transfer, 42(3), 460–484.

    Article  Google Scholar 

  • Clift, R., & Wright, L. (2000). Relationships between environmental impacts and added value along the supply chain. Technological Forecasting and Social Change, 65(3), 281–295.

    Article  Google Scholar 

  • Costanza, R., Cumberland, J. H., Daly, H., Goodland, R., Norgaard, R. B., Kubiszewski, I., et al. (2014). An introduction to ecological economics. Boca Raton: CRC Press.

    Google Scholar 

  • De Medeiros, J. F., Ribeiro, J. L. D., & Cortimiglia, M. N. (2014). Success factors for environmentally sustainable product innovation: A systematic literature review. Journal of Cleaner Production, 65, 76–86.

    Article  Google Scholar 

  • Despeisse, M., Ball, P. D., & Evans, S. (2013). Strategies and ecosystem view for industrial sustainability. In Re-engineering manufacturing for sustainabilityproceedings of the 20th CIRP international conference on life cycle engineering, (Figure 2), 565–570. https://doi.org/10.1007/978-981-4451-48-2.

  • Esty, D. C., Cornelius, P., et al. (2002). Environmental performance measurement. Oxford: Oxford University Press.

    Google Scholar 

  • Esty, D. C., Levy, M., Srebotnjak, T., & De Sherbinin, A. (2005). Environmental sustainability index: Benchmarking national environmental stewardship (pp. 47–60). New Haven: Yale Center for Environmental Law & Policy.

    Google Scholar 

  • European Commission (2011), Commission Staff Working Paper: Impact Assessment, Energy Roadmap 2050, Brussels, SEC (2011) 1565.

  • European Commission (2012), A stronger european industry for growth and economic recovery, Industrial policy communication update, Brussels, COM 582 final.

  • FAO. (2013). Fao statistical yearbook 2013, crop production statistics. Rome: Food and Agriculture Organization Rome. https://doi.org/10.1017/CBO9781107415324.004.

    Book  Google Scholar 

  • Fischer, F., & Miller, G. J. (2006). Handbook of public policy analysis: Theory, politics, and methods. CRC Press.

  • Frosch, R. A., & Gallopoulos, N. E. (1989). Strategies for Manufacturing Waste from one industrial process can serve as the raw materials for another, thereby reducing the impact of industry on the environment. Scientific American, 189, 144–152. https://doi.org/10.1038/scientificamerican0989-144.

    Article  Google Scholar 

  • Gibbs, D., & Deutz, P. (2005). Implementing industrial ecology? Planning for eco-industrial parks in the USA. Geoforum, 36(4), 452–464. https://doi.org/10.1016/j.geoforum.2004.07.009.

    Article  Google Scholar 

  • Guston, D. H. (2001). Boundary organizations in environmental policy and science : An introduction. Journal of Public Policy, 26(4), 399–408. https://doi.org/10.1177/016224390102600401.

    Article  Google Scholar 

  • Harris, P. (2003). Fairness, responsibility, and climate change. Ethics and International Affairs, 17, 149–156.

    Article  Google Scholar 

  • Haščič, I. (2012). Environmental innovation in Germany. In OECD Environment Working Papers, 53(12), 34.

  • Henisz, W. J. (2004). Political institutions and policy volatility. Economics and Politics, 16(1), 1–27. https://doi.org/10.1111/j.1468-0343.2004.00129.x.

    Article  Google Scholar 

  • Hsu, A., Johnson, L., Lloyd, A., 2013. Measuring progress. A Practical Guide from the Developers of the Environmental Performance Index (EPI) 80.

  • Huppes, G., & Ishikawa, M. (2005). Eco-efficiency and Its xsTerminology. Journal of Industrial Ecology, 9(4), 43–46. https://doi.org/10.1162/108819805775247891.

    Article  Google Scholar 

  • Husgafvel, R., Pajunen, N., Päällysaho, M., Paavola, I.-L., Inkinen, V., Heiskanen, K., et al. (2014). Social metrics in the process industry: Background, theory and development work. International Journal of Sustainable Engineering, 7, 171–182.

    Article  Google Scholar 

  • Husgafvel, R., Pajunen, N., Virtanen, K., Paavola, I. L., Päällysaho, M., Inkinen, V., et al. (2015). Social sustainability performance indicators–experiences from process industry. International Journal of Sustainable Engineering, 8(1), 14–25.

    Article  Google Scholar 

  • IEA. (2017). Key World Energy Statistics. https://doi.org/10.1017/CBO9781107415324.004.

  • Jensen, P. D., Basson, L., & Leach, M. (2011). Reinterpreting industrial ecology. Journal of Industrial Ecology, 1, 1–2. https://doi.org/10.1111/j.1530-9290.2011.00377.x.

    Article  Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis. Journal of the American Statistical Association, 98, 487. https://doi.org/10.1007/b98835.

    Article  Google Scholar 

  • Jung, E., Kim, J., & Rhee, S. (2001). The measurement of corporate environmental performance and its application to the analysis of efficiency in oil industry. Journal of Cleaner Production, 9, 551–563. https://doi.org/10.1016/S0959-6526(01)00011-7.

    Article  Google Scholar 

  • Kemp, R., Loorbach, D., & Rotmans, J. (2007). Transition management as a model for managing processes of co-evolution towards sustainable development. International Journal of Sustainable Development and World Ecology, 14(1), 78–91. https://doi.org/10.1080/13504500709469709.

    Article  Google Scholar 

  • Kemp, R., & Martens, P. (2007). Sustainable development: how to manage something that is subjective and never can be achieved? Sustainability: Science, Practice, & Policy, 3(2).

  • Knowledge Economy Indicators. (2005). Work package 7. State of the art report on simulation and indicators.

  • KPMG. (2016). A clear insight, 2016(December).

  • Krajnc, D., & Glavi, C. P. (2005). A model for integrated assessment of sustainable development. Resources Conservation and Recycling, 43, 189–208. https://doi.org/10.1016/j.resconrec.2004.06.002.

    Article  Google Scholar 

  • Krishnan, V. (2010). Constructing an area-based socioeconomic status index: a principal components analysis approach. Every day in every way: Creating learning experiences for every child, (May), 2–26. https://doi.org/10.1093/heapol/czl029.

  • Kritikos, A. (2014). Greece needs a strategy for its transition to an innovation economy. DIW Economic Bulletin, 2013, 3–11.

    Google Scholar 

  • Labuschagne, C. (2007). Sustainable project life cycle management: criteria for the South African process industry.

  • Labuschagne, C., Brent, A. C., & Van Erck, R. P. G. (2005). Assessing the sustainability performances of industries. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2003.10.007.

  • Levidow, L., Lindgaard-Jørgensen, P., Nilsson, Å., Skenhall, S. A., & Assimacopoulos, D. (2016). Process eco-innovation: Assessing meso-level eco-efficiency in industrial water-service systems. Journal of Cleaner Production, 110, 54–65. https://doi.org/10.1016/j.jclepro.2014.12.086.

  • Levidow, L., Lindgaard-Jørgensen, P., Nilsson, Å., Skenhall, S. A., & Assimacopoulos, D. (2016b). Process eco-innovation: Assessing meso-level eco-efficiency in industrial water-service systems. Journal of Cleaner Production, 110, 54–65. https://doi.org/10.1016/j.jclepro.2014.12.086.

    Article  CAS  Google Scholar 

  • Lin, C., & Chang, C.-C. (2015). The effect of technological diversification on organizational performance: An empirical study of S&P 500 manufacturing firms. Technological Forecasting and Social Change, 90, 575–586.

    Article  Google Scholar 

  • Linting, M., Meulman, J. J., Groenen, P. J. F., & Van Der Kooij, A. J. (2007). Nonlinear principal components analysis: Introduction and application. https://doi.org/10.1037/1082-989x.12.3.336.

  • Lundin, M. (2003). Indicators for measuring the sustainability of urban water systems – a life cycle approach. Department of Environmental Systems Analysis. Goteborg, Sweden: Chalmers University of Technology.

  • Mann, J., & Shideler, D. (2015). Measuring schumpeterian activity using a composite indicator. Journal of Entrepreneurship and Public Policy, 4(1), 57–84. https://doi.org/10.1108/jepp-07-2013-0029.

    Article  Google Scholar 

  • Mark, M. M., Henry, G. T., & Julnes, G. (2000). Evaluation: An integrated framework for understanding, guiding and improving policies and programs. Jossey-Bass Pfeiffer.

  • Marti, C. P., Rovira-Val, M. R., & Drescher, L. G. J. (2015). Are firms that contribute to sustainable development better financially? Corporate Social Responsibility and Environmental Management, 22(5), 305–319.

    Article  Google Scholar 

  • Mayer-Spohn, O. (2004). Sustainable development indicators within the German water industry: A case study. Göteborg: Chalmers tekniska h{ö}gskola.

    Google Scholar 

  • Mazzanti, M., Nicolli, F., Marin, G., & Gilli, M. (2015). Sustainable development and industrial development: Manufacturing environmental performance, technology and consumption/production perspectives. In UNIDO ISID working paper series, 22, 1–47.

  • McMillan, M., & Rodrik, D. (2011). Globalization, structural change and productivity Growth, (February). https://doi.org/10.3386/w17143.

  • Mendonça, S., Pereira, T. S., & Godinho, M. M. (2004). Trademarks as an indicator of innovation and industrial change. Research Policy, 33(9), 1385–1404. https://doi.org/10.1016/j.respol.2004.09.005.

    Article  Google Scholar 

  • Merli, R., Preziosi, M., & Ippolito, C. (2016). Promoting sustainability through EMS application: A survey examining the critical factors about EMAS registration in Italian organizations. Sustainability, 8(3), 197.

    Article  Google Scholar 

  • Nicoletti, G., Scarpetta, S., & Boylaud, O. (2000). Summary indicators of product market regulation with an extension to employment protection legislation. Paris: OECD Publishing. https://doi.org/10.1787/215182844604.

    Book  Google Scholar 

  • OECD, (2008). Handbook on constructing composite indicators: Methodology and user guide. https://doi.org/10.1787/9789264043466-en.

  • OECD (2012), Beyond industrial policy—Emerging issues and new trends, draft STI working paper on industrial policy, Paris, DSTI/IND19.

  • Parris, T. M., & Kates, R. W. (2003). Characterizing and measuring sustainable development. Annual Review of Environment and Resources, 28(1), 559–586.

    Article  Google Scholar 

  • Pohl, E. (2006). Towards corporate sustainable development the ITT flygt sustainability index, Technology.

  • Rodrik, D. (2014). Green industrial policy. Oxford Review of Economic Policy, 30(3), 469–491. https://doi.org/10.1093/oxrep/gru025.

    Article  Google Scholar 

  • Rodrik, D. (2016). Premature deindustrialization. Journal of Economic Growth, 21(1), 1–33. https://doi.org/10.1007/s10887-015-9122-3.

    Article  Google Scholar 

  • Romano, O., & Ercolano, S. (2013). Who makes the most? Measuring the “Urban environmental virtuosity”. Social Indicators Research, 112(3), 709–724. https://doi.org/10.1007/s11205-012-0078-9.

    Article  Google Scholar 

  • Saltelli, A. (2007). Composite indicators between analysis and advocacy. Social Indicators Research, 81(1), 65–77. https://doi.org/10.1007/s11205-006-0024-9.

    Article  Google Scholar 

  • Siche, J. R., Agostinho, F., Ortega, E., & Romeiro, A. (2008). Sustainability of nations by indices: Comparative study between environmental sustainability index, ecological footprint and the emergy performance indices. Ecological Economics, 66(4), 628–637. https://doi.org/10.1016/j.ecolecon.2007.10.023.

    Article  Google Scholar 

  • Siddig, A. A. H., Ellison, A. M., Ochs, A., Villar-Leeman, C., & Lau, M. K. (2016). How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2015.06.036.

    Article  Google Scholar 

  • Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2012). An overview of sustainability assessment methodologies. Ecological Indicators, 15(1), 281–299. https://doi.org/10.1016/j.ecolind.2011.01.007.

    Article  Google Scholar 

  • Turnhout, E. (2009). The effectiveness of boundary objects: the case of ecological indicators. Science and Public Policy, 36(5), 403–412. https://doi.org/10.3152/030234209X442007.

    Article  Google Scholar 

  • Turnhout, E., Hisschemöller, M., & Eijsackers, H. (2007). Ecological indicators: Between the two fires of science and policy. Ecological Indicators, 7(2), 215–228. https://doi.org/10.1016/j.ecolind.2005.12.003.

    Article  Google Scholar 

  • Van Den Bergh, J. C. J. M. (2013). Robert Ayres, ecological economics and industrial ecology. Environmental Innovation and Societal Transitions.. https://doi.org/10.1016/j.eist.2013.09.008.

    Article  Google Scholar 

  • Wang, D., Li, S., & Sueyoshi, T. (2014). DEA environmental assessment on US Industrial sectors: Investment for improvement in operational and environmental performance to attain corporate sustainability. Energy Economics, 45, 254–267.

    Article  Google Scholar 

  • Wright, M., Allen, D., Clift, R., & Sas, H. (1997). Measuring corporate environmental performance: the ICI environmental burden system. Journal of Industrial Ecology, 1(4), 117–127.

    Article  CAS  Google Scholar 

  • Zuo, X., Hua, H., Dong, Z., & Hao, C. (2017). Environmental performance index at the provincial level for China 2006–2011. Ecological Indicators, 75, 48–56. https://doi.org/10.1016/j.ecolind.2016.12.016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Arbolino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 8 and 9.

Table 9 Correlation matrix of indicators

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbolino, R., De Simone, L. Rethinking public and private policies in Europe with the support of a industrial sustainability index. Int Environ Agreements 19, 315–339 (2019). https://doi.org/10.1007/s10784-019-09438-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10784-019-09438-7

Keywords

Navigation