Skip to main content
Log in

Cracking Resistance of Glass in Terms of the Principles of Fracture Mechanics

  • Published:
International Applied Mechanics Aims and scope

The basic principles of subcritical crack growth (SCG) are developed based on linear elastic fracture mechanics (LEFM) and dynamic crack growth (DCG), within the framework of linear elastic dynamic fracture mechanics (LEDFM), in order to determine the criteria of fracture toughness and crack branching (bifurcation, forking) in glass. The fractographic analysis of fracture surfaces of the samples tested for bend tensile is used for determining the required calculation parameters. The results of the experimental studies are analyzed with the use of a probabilistic-statistical method for estimating the data with the use of two-parameter Weibull distribution. The critical stress intensity factor is taken as a fracture toughness criterion. The crack branching stress intensity factor is used as a crack branching criterion. These values are determined using the quantile function of the assumed distribution for a 95% reliability level, at the lower limit of the 95% confidence interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. G. Demchyna and T. Yu. Osadchuk, “Determination of strength and durability of glass based on linear elastic fracture mechanics,” Opir Mater. Teor. Sporud, 100, 40–58 (2018).

    Google Scholar 

  2. A. A. Alexeev, A. S. Syromyatnikova, and A. I. Levin, “Fracture mechanisms during crack branching. Part 1. Amorphous Polymer,” World Appl. Sci. J., 24, No. 4, 414–420 (2013).

    Google Scholar 

  3. S. R. Anthony, J. P. Chubb, and J. Congleton, “The crack-branching velocity,” Philosophical Magazine, 22, No. 180, 1201–1216 (1970).

    Article  Google Scholar 

  4. S. R. Anthony and J. Congleton, “Crack branching in strong metals,” Metal Sci. J., 2, No. 1, 158–160 (1968).

    Article  Google Scholar 

  5. Standard Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics, ASTM C1322-15, PA: ASTM International, West Conshohocken (2015).

  6. Standard Practice for Interpreting Glass Fracture Surface Features, ASTM C1256-93, PA: ASTM International, West Conshohocken (2013).

  7. Standard Test Methods for Strength of Glass by Flexure (Determination of Modulus of Rupture), ASTM C158-02(2017), PA: ASTM International, West Conshohocken (2017).

  8. F. E. Barstow and H. E. Edgerton, “Glass-fracture velocity,” J. Amer. Ceramic Soc., 22, No. 1–12, 302–307 (1939).

    Article  Google Scholar 

  9. F. P. Bowden, J. H. Brunton, J. E. Field, and A. D. Heyes, “Controlled fracture of brittle solids and interruption of electrical current,” Nature, 216, No. 5110, 38–42 (1967).

    Article  Google Scholar 

  10. R.C. Bradt, “The fractography and crack patterns of broken glass,” J. Fail. Anal. Prev., 11, No. 2, 79–96 (2011).

    Article  Google Scholar 

  11. A. B. J. Clark, and G. R. Irwin, “Crack-propagation behaviors,” Exper. Mech., 6, No. 6, 321–330 (1966).

    Article  Google Scholar 

  12. J. W. Craggs, “On the propagation of a crack in an elastic-brittle material,” J. Mech. Phys. Solids, 8, No. 1, 66–75 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Congleton and G. J. Dvorak, “Practical applications of crack-branching measurements,” in: G. C. Sih (ed.), Proc. Inter. Conf. on Dynamic Crack Propagation, Springer, Dordrecht (1973), pp. 427–438.

  14. K. C. Datsiou and M. Overend, “The strength of aged glass,” Glass Struct. Eng., 2, No. 2, 105–120 (2017).

    Article  Google Scholar 

  15. W. Döll, “Investigations of the crack branching energy,” Int. J. Fract., 11, No. 1, 184–186 (1975).

    Article  Google Scholar 

  16. H. E. Edgerton and F. E. Barstow, “Further studies of glass fracture with high-speed photography,” J. Amer. Ceramic Soc., 24, No. 4, 131–137 (1941).

    Article  Google Scholar 

  17. A. G. Evans and S. M. Wiederhorn, “Crack propagation and failure prediction in silicon nitride at elevated temperature,” J. Mater. Sci., 9, No. 2, 270–278 (1974).

    Article  Google Scholar 

  18. V. D. Fréchette, Failure Analysis of Brittle Materials. Advances in Ceramics, 28, Amer. Ceramic Soc., Westerville, OH (1990), p. 240.

  19. L. B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge (1990), p. 563.

  20. E. E. Gdoutos, Fracture Mechanics Criteria and Applications, Springer, Berlin (2012), p. 314.

  21. M. Haldimann, “Fracture Strength of Structural Glass Elements – Analytical and Numerical Modelling, Testing and Design” [Electronic resource]: PhD Thesis (These N 3671), EPFL, Lausanne (2006), p. 202.

  22. G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957).

    Article  Google Scholar 

  23. F. Kerkhof, “General Lecture: Wave fractographic investigations of brittle fracture dynamics,” in: G.C. Sih (ed.), Proc. Inter. Conf. on Dynamic Crack Propagation, Springer, Dordrecht (1973), pp. 3–35.

  24. J. D. Landes, “Stress Analysis and Fracture Mechanics,” Practices in Failure Analysis [Electronic resource], 163–165.

  25. J. Mecholsky, “Quantitative fractographic analysis of fracture origins in glass,” in: R. C. Bradt and R. E. Tresseler (eds.), Fractography of Glass, Springer, Boston (1994), pp. 37–73.

  26. T. A. Michalske, “Fractography of stress corrosion cracking in glass,” in: R. C. Bradt and R. E. Tresseler (eds.), Fractography of Glass, Springer, Boston (1994), pp. 111–142.

  27. N. F. Mott, “Fracture of metals: some theoretical considerations,” Engineering, 165, 16–18 (1948).

    Google Scholar 

  28. A. W. Momber, “The 50th anniversary of the death of Adolf Gustav Smekal (1895–1959), a pioneer in materials physics,” J. Mater. Sci., 45, 750–758 (2010).

    Article  Google Scholar 

  29. N. N. Nemeth, L. M. Powers, L. A. Janosik, and J. P. Gyekenyesi, CARES/LIFE Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (NASA/TM-2003-106316), NASA Glenn Research Center, Cleveland, OH (2003), p. 342.

  30. J. C. Newman, Jr. and I. S. Raju, “An empirical stress-intensity factor equation for surface crack,” Eng. Fract. Mech., 15, No. 1–2, 185–192 (1981).

  31. M. Overend, S. De Gaetano, and M. Haldimann, “Diagnostic interpretation of glass failure [Electronic resource],” Struct. Eng. Int., 17, 151–158 (2007).

    Article  Google Scholar 

  32. P. C. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” J. Basic Eng.: Trans. ASME. Series D, 85, No. 4, 528–534 (1963).

    Article  Google Scholar 

  33. H. G. Richter and F. Kerkhof, “Stress wave fractography,” in: R. C. Bradt and R. E. Tresseler (eds.), Fractography of Glass, Springer, Boston (1994), pp. 75–109.

  34. A. J. Rosakis, O. Samudrala, and D. Coker, “Cracks faster than the shear wave speed,” Science, 284, No. 5418, 1337–1340 (1999).

    Article  Google Scholar 

  35. D. Tromans, “Crack propagation in brittle materials: relevance to minerals comminution,” Int. J. Res. Rev. Appl. Sci. (IJRRAS), 13, No. 2, 406–427 (2012).

    MathSciNet  Google Scholar 

  36. K. Walker, “The effect of stress ratio during crack propagation and fatigue for 2024-t3 and 7075-t6 aluminum,” in: M. Rosenfeld (ed.), Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462, Amer. Soc. for Testing and Materials (1970), pp. 1–14.

  37. S. M. Wiederhorn and L. H. Bolz, “Stress corrosion and static fatigue of glass,” J. Amer. Ceramic Soc., 53, No. 10, 543–548 (1970).

    Article  Google Scholar 

  38. E. H. Yoffe, “The moving Griffith crack,” Philosoph. Magazine Series 7, 42, No. 330, 739–750 (1951).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Demchina.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 58, No. 3, pp. 102–115, May–June 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demchina, B.G., Gula, V.O., Osadchuk, T.Y. et al. Cracking Resistance of Glass in Terms of the Principles of Fracture Mechanics. Int Appl Mech 58, 336–347 (2022). https://doi.org/10.1007/s10778-022-01159-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-022-01159-w

Keywords

Navigation