Skip to main content
Log in

Effect of Non-Stoichiometry and Difference between the Tensile and Compressive Moduli of Elasticity of Perovskite on the Diffusion Creep of a Thick-Walled Perovskite Cylinder

  • Published:
International Applied Mechanics Aims and scope

A physical model for describing the diffusion creep in perovskite-type material given oxygen non-stoichiometry and tensile–compressive asymmetry is developed. Reference tests for determining the creep parameters in the constitutive equations are discussed. The proposed model is used for combined numerical-and-analytical simulation of diffusion creep in a hollow thick-walled perovskite cylinder under generalized plane strain conditions. The analytical solution for oxygen non-stoichiometry is used. Also, the closed-form general expressions for stresses in a hollow cylinder undergoing diffusion creep at a given oxygen chemical potential gradient are derived. The numerical integration is performed using the-Runge–Kutta–Merson method of the fourth order with automatic step control. The stress redistribution over time in the cylinder under the diffusion creep conditions is analyzed. The numerical results related to tensile–compressive asymmetry and oxygen surface exchange in a perovskite cylinder are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. M. Grygorenko, A.Ò. Vasylenko, and N. D. Pankratova, Statics of Anisotropic Thick-Walled Shells [in Russian], Vyshcha Shkola, Kyiv (1985), p. 190.

    Google Scholar 

  2. V. S. Gudramovich, Creep Theory and Its Applications to the Design of Elements of Thin-Walled Structures [in Russian], Naukova Dumka, Kyiv (2005), p. 221.

    Google Scholar 

  3. A.A. Zolochevsky, A. N. Sklepus, and S. N. Sklepus, Nonlinear Solid Mechanics [in Russian], Biznes Investor Grupp, Kharkiv (2011), p. 720.

    Google Scholar 

  4. Yu. N. Rabotnov, “On the mechanism of long-term fracture,” in: Problems of Strength of Materials and Structures, Izd. AN SSSR, Moscow (1959), pp. 5–7.

  5. S. N. Sklepus and A.A. Zolochevskii, “A study of the creep damageability of tubular solid oxide fuel cell,” Strength of Materials, 46, No. 1, 49–56 (2014).

  6. P. A. Steblianko, Splitting Methods in Spatial Problems of Plasticity Theory [in Russian], Naukova Dumka, Kyiv (1998), p. 304.

    Google Scholar 

  7. Yu. N. Shevchenko, M.E. Babeshko, V. V. Piskun, and V. T. Savchenko, Spatial Problems of Thermoplasticity [in Russian], Naukova Dumka, Kyiv (1980), 262 p.

    MATH  Google Scholar 

  8. H. Altenbach, P. Schiebe, and A. A. Zolochevsky, “Zum Kriechen isotroper Werkstoffe mit komplizierten Eigenschaften,” Rheologica Acta, 30, No. 4, 388–399 (1991).

  9. M. E. Babeshko and V. G. Savchenko, “Allowing for the third deviatoric stress invariant in analyzing the deformation of thin shells,” Int. Appl. Mech., 54, No. 2, 163–171 (2018).

    Article  MathSciNet  Google Scholar 

  10. M. B. Choi, S. Y. Jeon, H. N. Im, E. D. Wachsman, and S. J. Song, “Oxygen exchange kinetics and ionic conductivity from chemical expansion relaxation of mixed conducting Ba0.5Sr0.5Co0.8Fe0.2O3–δ,” J. Electrochem. Soc., 159, No. 2, 23–28 (2011).

    Article  Google Scholar 

  11. A. Z. Galishin and S. N. Sklepus, “Estimating the strength of layered cylindrical shells under creep,” Int. Appl. Mech., 54, No. 1, 64–74 (2018).

    Article  MathSciNet  Google Scholar 

  12. A. Y. Grigorenko, Y. M. Grigorenko, and I. A. Loza, “Numerical analysis of dynamical processes in inhomogeneous piezoceramic cylinders (review),” Int. Appl. Mech., 56, No. 5, 523–571 (2020).

    Article  MathSciNet  Google Scholar 

  13. R. Kriegel, R. Kircheisen, and J. Töpfer, “Oxygen stoichiometry and expansion behavior of Ba0.5Sr0.5Co0.8Fe0.2O3–δ,” Solid State Ionics, 181, No. 1–2, 64–70 (2010).

    Article  Google Scholar 

  14. K. Kwok, H. L. Frandsen, M. Sogaard, and P. V. Hendriksen, “Mechanical reliability of geometrically imperfect tubular oxygen transport membranes,” J. Membr. Sci., 470, 80–89 (2014).

    Article  Google Scholar 

  15. B. Euser, J. R. Berger, H. Zhu, and R. J. Kee, “Chemically induced stress in tubular mixed ionic-electronic conducting (MIEC) ceramic membranes,” J. Electrochem. Soc., 163, No. 10, F1294–F1301, (2016).

    Article  Google Scholar 

  16. Z. Yang and Y. S. Lin, “A semi-empirical equation for oxygen nonstoichiometry of perovskite-type ceramics,” Solid State Ionics, 150, No. 3–4, 245–254 (2002).

  17. G. Pećanac, Thermo-Mechanical Investigations and Predictions for Oxygen Transport Membrane Materials, PhD Thesis, Technical University Aachen, Aachen, (2013), 143 p.

  18. J. Pelleg, Creep in Ceramics, Springer, Cham (2017), 445 p.

    Book  Google Scholar 

  19. V.G. Savchenko and M.E. Babeshko, “Thermostressed state of layered bodies of revolution damaging under deformation,” Int. Appl. Mech., 54, 3, 287–305 (2018).

    Article  MathSciNet  Google Scholar 

  20. Yu. N. Shevchenko and V. G. Savchenko, “Three-dimensional problems of thermoviscoplasticity: focus on Ukrainian research (review),” Int. Appl. Mech., 52, No. 3, 217–271 (2016).

    Article  MathSciNet  Google Scholar 

  21. A. Zolochevsky, S. Sklepus, A. Galishin, A. Kühhorn, and M. Kober, “A comparison between the 3D and the Kirchhoff-Love solutions for cylinders under creep-damage conditions,” Technische Mechanik, 34, No. 2, 104–113 (2014).

  22. A. Zolochevsky, A. Grabovskiy, L. Parkhomenko, and Y. S. Lin, “Coupling effects of oxygen surface exchange kinetics and membrane thickness on chemically induced stresses in perovskite-type membranes,” Solid State Ionics, 212, 55–65 (2012).

    Article  Google Scholar 

  23. A. Zolochevsky, L. Parkhomenko, and A. Kühhorn, “Analysis of oxygen exchange limited transport and chemical stresses in perovskite-type hollow fibers,” Materials Chemistry and Physics, 135, No. 2–3, 594–603 (2012).

  24. A. Zolochevsky, S. Sklepus, T. H. Hyde, A. A. Becker, and S. Peravali, “Numerical modeling of creep and creep damage in thin plates of arbitrary shape from materials with different behavior in tension and compression under plane stress conditions,” Int. J. Numer. Meth. Eng., 80, No. 11, 1406–1436, (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Zolochevskyi.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 57, No. 3, pp. 95–106, May–June 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolochevskyi, O.O., Parkhomenko, L.O. & Martynenko, O.V. Effect of Non-Stoichiometry and Difference between the Tensile and Compressive Moduli of Elasticity of Perovskite on the Diffusion Creep of a Thick-Walled Perovskite Cylinder. Int Appl Mech 57, 336–346 (2021). https://doi.org/10.1007/s10778-021-01085-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-021-01085-3

Keywords

Navigation