Skip to main content
Log in

Numerical Analysis of Dynamical Processes in Inhomogeneous Piezoceramic Cylinders (Review)*

  • Published:
International Applied Mechanics Aims and scope

The review is devoted to the numerical solution of new problems of electroasticity, namely, determination of the dynamical characteristics of inhomogeneous piezoceramic waveguides of circular cross-section and inhomogeneous piezoceramic cylinders of finite length. To solve these problems, an effective numerical–analytical approach is used. The approach employs various transformations (special functions, Fourier series expansion, and spline-collocation method), which make it possible to reduce the original three-dimensional partial differential equations of electroelasticity to a boundary-value eigenvalue problem for a system of ordinary differential equations. The system is solved by the method of discrete orthogonalization. Using the results obtained, the features of spectral characteristics in an inhomogeneous structure are studied considering the coupled electric field of the piezoceramic layers. The effect of the inhomogeneity and coupled electric field on the dynamical characteristics of the bodies is studied as well. Much attention is paid to the reliability of the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ya. Grigorenko, T. L. Efimova, and I. A. Loza, “An approach to the study of hollow piezoceramic finite-length cylinders,” Dop. NAN Ukrainy, No. 6, 61–67 (2009).

  2. A. Ya. Grigorenko, T. L. Efimova, and I. A. Loza, “Application of the spline-approximation and discrete-orthogonalization methods to solve problems of the free vibrations of hollow piezoceramic cylinders,” Teor. Prikl. Mekh., 44, 133–137 (2008).

  3. A. Ya. Grigorenko and I. A. Loza, “Nonaxisymmetric vibrations of hollow cylinders made of axially polarized functionally graded materials,” Visn. Dnepr. Univ., Ser. Mekh., 15-2, No. 5, 48–53 (2011).

  4. A. Ya. Grigorenko and I. A. Loza, “Nonaxisymmetric electroelastic waves in a hollow piezoceramic cylinder made of a functionally graded material with axially polarized layers,” Probl. Obchysl. Mekh. Mitsn. Konstr., 20, 137–143 (2012).

    Google Scholar 

  5. A. Ya. Grigorenko and I. A. Loza, “Axisymmetric waves in laminated hollow cylinders with radially polarized piezoceramic layers,” Probl. Obchysl. Mekh. Mitsn. Konstr., 17, 87–95 (2011).

    MATH  Google Scholar 

  6. A. Ya. Grigorenko, I. A. Loza, and N. A. Shul’ga, “Propagation of axisymmetric waves in a hollow pieziceramic cylinder,” Dop. AN URSR, Ser. A, No. 3, 35–39 (1983).

  7. O. Ya. Grigorenko, T. L. Efimova, and I. A. Loza, “Solving an axisymmetric problem of the free vibrations of piezoceramic hollow finite-length cylinders with the spline-collocation method,” Mat. Met. Fiz.-Mekh. Polya, 51, No. 3, 112–119 (2008).

    MATH  Google Scholar 

  8. Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar, Free Vibrations of Members of Shell Structures [in Russian], Naukova Dumka, Kyiv (1986).

    Google Scholar 

  9. Ya. M. Grigorenko, G. G. Vlaikov, and A. Ya. Grigorenko, Numerical–Analytical Solution of Shell Problems Based on Various Models [in Russian], Akademperiodika, Kyiv (2006).

  10. V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity, Vol. 5 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kyiv (1989).

  11. N. F. Ivina and B. A. Kasatkin, “Normal waves in an anisotropic piezoactive waveguide,” Defektoskopiya, No. 4, 27–32 (1975).

  12. V. N. Lazutkin and A. I. Michailov, “Vibrations of finite-length piezoaceramic cylinders polarized over the height,” Akust. Zh., 22, No. 3, 393–399 (1976).

    Google Scholar 

  13. I. A. Loza, “Application of the spline-approximation and discrete-orthogonalization methods to solve problems of the free vibrations of hollow piezoceramic cylinders,” Teor. Appl. Mekh., 44, 61–65 (2008).

    Google Scholar 

  14. I. A. Loza, “Nonaxisymmetric waves in laminated hollow waveguides with circumferentially polarized piezoceramic layers,” Prikl. Mekh. Mat. Probl., 8, 188–196 (2010).

    Google Scholar 

  15. A. Ambadar and C. D. Ferris, “Wave propagation in piezoelectric two-layered cylindrical shell with hexagonal symmetry. Some application for long bone,” J. Acoust. Soc. Amer., 63, No. 3, 781–792 (1965).

    ADS  Google Scholar 

  16. M. Berg, P. Hagedorn, and S. Gutschmidt, “On the dynamics of piezoelectric cylindrical shells,” J. Sound and Vibr., 274, No.1, 91-109 (2004).

    ADS  Google Scholar 

  17. D. Berlincourt, “Piezoelectric crystals and ceramics,” in: O. E. Mattiat (ed.), Ultrasonic Transducer Materials, Plenum Press, New York (1971), pp. 62–124.

  18. V. Birman and L. W. Byrd, “Modeling and analysis of functionally graded materials and structures,” Appl. Mech. Rev., 60, 195–216 (2007).

    ADS  Google Scholar 

  19. W. Q. Chen and H. J. Ding, “On free vibrations of a functionally graded piezoelectric rectangular plate,” Acta Mech., 153, 207–216 (2002).

    MATH  Google Scholar 

  20. W. Q. Chen, Y. Lu, J. R. Ye, and J. B. Cai, “3D electroelastic fields in a functionally graded piezoceramic hollow sphere under mechanical and electric loading,” Arch. Appl. Mech., 72, 39–-51 (2002).

    ADS  MATH  Google Scholar 

  21. E. F. Crawly and J. de Luis, “Use of piezoelectric actuators as elements of intelligent structures,” AIAA J., 25, No. 10, 1373–1385 (1987).

    ADS  Google Scholar 

  22. C. Chree, “Longitudinal vibrations of a circular bar,” Quart. J. Pure Appl. Math., 21, 287–298 (1886).

    MATH  Google Scholar 

  23. H. L. Dai, L. Hong, Y. M. Fu, and X. Xiao, “Analytical solution for electromagnetothermoelastic behaviors of a functionally graded piezoelectric hollow cylinder,” Appl. Math. Model., 34, 343–357 (2010).

    MathSciNet  MATH  Google Scholar 

  24. H. L. Dai, Y. M. Fu, and J. H. Yang, “Electromagnetic behaviors of functionally graded piezoelectric solid cylinder and sphere,” Acta Mech. Sin., 23, 55–63 (2007).

    ADS  MATH  Google Scholar 

  25. H. L. Dai and X. Wang, “Transient wave propagation in piezoelectric hollows spheres subjected to thermal shock and electric excitation,” Struct. Eng. Mech., 19, No. 4, 441–457 (2005).

    Google Scholar 

  26. M. C. Dokmeci, Dynamic Analysis of Piezoelectric Strained Elements, Research Development and Standartization Group, New York (1992).

    Google Scholar 

  27. A. Grigorenko, W. H. Muller, R. Wille, and S. Yaremchenko, “Numerical solution of stress-strain state in a hollow cylinder by means of spline approximation,” J. Math. Sci., 180, No. 2, 135–145 (2012).

    MathSciNet  Google Scholar 

  28. A. Grigorenko and S. Yaremchenko, “Spline-approximation method for investigation of mechanical behavior of anisotropic inhomogeneous shells,” in: Abstracts 9th Int. Conf. on Modern Building Materials, Struct. and Techniques, Tekhnika, Vilnius (2007), pp. 918–924.

  29. A. Ya. Grigorenko, “Numerical solution of problems of free axisymmetric vibrations of a hollow orthotropic cylinder under various boundary conditions at its end faces,” Int. Appl. Mech., 33, No. 5, 388–395 (!997).

  30. A. Ya. Grigorenko, “Numerical studying the stationary dynamical processes in anisotropic inhomogeneous cylinders,” Int. Appl. Mech., 41, No. 8, 831–866 (2005).

    ADS  Google Scholar 

  31. A. Ya. Grigorenko and A. S. Bergulev, “Determination of the stressed state of rectangular anisotropic plates in the space statement,” J. Math. Sci., 187, No. 4, 699–707 (2012).

    Google Scholar 

  32. A. Ya. Grigorenko and T. L. Efimova, “Application of spline-approximation for solving the problems on natural vibrations of rectangular shallow shells with varying thickness,” Int. Appl. Mech., 41, No. 10, 1161–1169 (2005).

    ADS  Google Scholar 

  33. A. Ya. Grigorenko and T. L. Efimova, “Using spline-approximation to solve problems of axisymmetric free vibration of thick-walled orthotropic cylinders,” Int. Appl. Mech., 44, No. 10, 1137–1147 (2008).

    ADS  MathSciNet  Google Scholar 

  34. A. Ya. Grigorenko and T. L. Efimova, “Free axisymmetric vibrations of solid cylinders: numerical problem solving,” Int. Appl. Mech., 46, No. 5, 499–508 (2010).

    ADS  MathSciNet  Google Scholar 

  35. A. Ya. Grigorenko, T. L. Efimova, and Yu. A. Korotkikh, “Free axisymmetric vibrations of hollow cylinder of finite length made of functionally graded materials,” J. Math. Sci., 207, No. 2, 1–16 (2016).

    Google Scholar 

  36. A. Ya. Grigorenko, T. L. Efimova, and Yu. A. Korotkikh, “Free axisymmetric vibrations of cylindrical shells made of functionally graded materials,” Int. Appl. Mech., 53, No. 6, 654–665 (2017).

    MathSciNet  MATH  Google Scholar 

  37. A. Ya. Grigorenko, T. L. Efimova, and I. A. Loza, “Solution of an axisymmetric problem of free vibrations of piezoceramic hollow cylinders of finite length by the spline collocation method,” J. Math. Sci., 165, No. 2, 290–300 (2010).

    MATH  Google Scholar 

  38. A. Ya. Grigorenko and A. U. Bergulev, “Determination of the stressed state of rectangular anisotropic plates in the space statement,” J. Math. Sci., 187, No. 4, 699–707 (2012).

    Google Scholar 

  39. A. Ya. Grigorenko, T. L. Efimova, and L. V. Sokolova, “On the approach to studying free vibrations of cylindrical shells of variable thickness in the circumferential direction within a refined statement,” J. Math. Sci., 181, No. 4, 548–563 (2010).

    MATH  Google Scholar 

  40. A. Ya. Grigorenko, T. L. Efimova, and I. A. Loza, “On the investigation of free vibrations of nonthin cylindrical shells of variable thickness by spline-collocation method,” J. Math. Sci., 184, No. 4, 506–519 (2012).

    Google Scholar 

  41. A. Ya. Grigorenko and Ya. M. Grigorenko, “Static and dynamic problems for anisotropic inhomogeneous shells with variable parameters (Review),” Int. Appl. Mech., 49, No. 2, 123–193 (2013).

    ADS  Google Scholar 

  42. A. Ya. Grigorenko and I. A. Loza, “Axisymmetric waves in layered hollow cylinders with axially polarized piezoceramic layers,” Int. Appl. Mech., 47, No. 6, 707–713 (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  43. A. Ya. Grigorenko and I. A. Loza, “Free nonaxisymmetric vibrations of radially polarized hollow piezoceramic cylinders of finite length,” Int. Appl. Mech., 46, No. 11, 1229–1237 (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  44. A. Ya. Grigorenko and I. A. Loza, “Solution of the problem of nonaxisymmetric free vibrations of the piezoceramic hollow cylinders with axial polarization,” J. Math. Sci., 184, No. 1, 69–77 (2012).

    MATH  Google Scholar 

  45. A. Ya. Grigorenko and I. A. Loza, “Nonaxisymmetric waves in layered hollow cylinders with radially polarized piezoceramic layers,” Int. Appl. Mech., 49, No. 6, 641–649 (2013).

    ADS  MathSciNet  Google Scholar 

  46. A. Ya. Grigorenko and I. A. Loza, “Nonaxisymmetric waves in layered hollow cylinders with axially polarized piezoceramic layers,” Int. Appl. Mech., 50, No. 2, 150–158 (2014).

    ADS  MathSciNet  Google Scholar 

  47. A. Ya. Grigorenko and I. A. Loza, “Axisymmetric acoustoelectric waves in a hollow cylinder made of a continuously inhomogeneous piezoelectric material,” Int. Appl. Mech., 53, No. 4, 374–380 (2017).

    ADS  MathSciNet  Google Scholar 

  48. A. Ya. Grigorenko and I. A. Loza, “Propagation of axisymmetric electroelastic waves in a hollow layered cylinder under mechanical excitation,” Int. Appl. Mech., 53, No. 5, 562–567 (2017).

    ADS  MathSciNet  Google Scholar 

  49. A. Ya. Grigorenko, I. A. Loza, and S. N. Yaremchenko, “Numerical analysis of free vibrations of piezoelectric cylinders,” in: New Achievements in Continuum Mechanics and Thermodynamics, Springer, Berlin (2019), pp. 187–196.

  50. A. Ya. Grigorenko, W. H. Muller, Ya. M. Grigorenko, and G. G. Vlaikov, Recent Developments in Anisotropic Heterogeneous Shell Theory. General Theory and Applications of Classical Theory, Vol. 1, Springer, Berlin (2016).

  51. A. Ya. Grigorenko, W. H. Muller, Ya. M. Grigorenko, and G. G. Vlaikov, Recent Developments in Anisotropic Heterogeneous Shell Theory. Applications of Refined and Three-Dimensional Theory, Vol. 11A, Springer, Berlin (2016).

  52. A. Ya. Grigorenko, W. H. Muller, Ya. M. Grigorenko, and G. G. Vlaikov, Recent Developments in Anisotropic Heterogeneous Shell Theory. Applications of Refined and Three-Dimensional Theory, Vol. 11B, Springer, Berlin (2016).

  53. A. Ya. Grigorenko, W. H, Muller, R. Wille, and I. A. Loza, “Nonaxisymmetric vibrations of radially polarized hollow cylinders made of functionally gradient piezoelectric materials,” Continuum Mech. Thermodyn., 24, No. 4–6, 515–524 (2012).

  54. A. Ya. Grigorenko, S. A. Pankrat’ev, and S. N. Yaremchenko, “Influence of orthotropy on the stress–strain state of quadrangular plates of different shapes,” Int. Appl. Mech., 55, No. 5, 199–209 (2019).

    ADS  MathSciNet  Google Scholar 

  55. A. Ya. Grigorenko, S. V. Puzyrev, A. P. Prigoda, and V. V. Horishko, “Theoretical-experimental investigation of frequencies of free vibrations of circular cylindrical shells,” J. Math. Sci., 174, No. 2, 254–267 (2011).

    Google Scholar 

  56. A.Ya. Grigorenko, S.V. Puzyrev, and E.A. Volchek, “Investigation of free vibrations of noncircular cylindrical shells by the spline-collocation method,” J. Math. Sci., 185, No. 6, 824–827 (2012).

    MathSciNet  Google Scholar 

  57. A. Ya. Grigorenko and G. G. Vlaikov, Some Problems of the Theory of Elasticity for Anisotropic Bodies of Cylindrical Form, Inst. Mech. of NAS of Ukraine and Techn. Center of NAS of Ukraine, Kyiv (2002).

  58. A. Ya. Grigorenko and G. G. Vlaikov, “Investigation of the static and dynamic behavior of anisotropic cylindrical bodies with noncircular cross-section,” Int. J. Solids Struct., 41, 2781–2790 (2004).

    MATH  Google Scholar 

  59. A. Ya. Grigorenko and S. N. Yaremchenko, “Investigation of static and dynamic behavior of anisotropic inhomogeneous shallow shells by spline approximation method,” J. Civil Eng. Management, 15, No. 1, 87–93 (2009).

    Google Scholar 

  60. A. Ya. Grigorenko, N. P. Yaremchenko, and S. N. Yaremchenko, “Analysis of the anisotropic stress–strain state of a continuously inhomogeneous hollow sphere,” Int. Appl. Mech., 54, No. 5, 577–583 (2018).

    ADS  Google Scholar 

  61. Ya. M. Grigorenko, “Solution of problems in the theory of shells by numerical-analysis methods,” Sov. Appl. Mech., 20, No. 10, 881–897 (1984).

    ADS  MATH  Google Scholar 

  62. Ya. M. Grigorenko, A. Ya. Grigorenko, and T. L. Efimova, “Spline-based investigation of natural vibrations of orthotropic rectangular plates of variable thickness within classical and refined theories,” J. Mech. Struct., 3, No. 5, 929–952 (2008).

    Google Scholar 

  63. Ya. M. Grigorenko, A. Ya. Grigorenko, and G. G. Vlaikov, Problems of Mechanics for Anisotropic Inhomogeneous Shells on Basis of Different Models [in Russian], Akademperiodika, Kyiv (2009).

    Google Scholar 

  64. Y. M. Grigorenko, A. Y. Grigorenko, and L. I. Zakhariichenko, “Analysis of influence of the geometrical parameters of elliptic cylindrical shells with variable thickness on their stress–strain state,” Int. Appl. Mech., 54, No. 2, 155–162 (2018).

    ADS  MathSciNet  Google Scholar 

  65. A. N. Guz, “Modern directions in the mechanics of a solid deformable body,” Sov. Appl. Mech., 21, No. 9, 823–828 (1885).

    ADS  Google Scholar 

  66. A. N. Guz and F. G. Makhort, “The physical fundamentals of the ultrasonic nondestructive stress analysis of solids,” Int. Appl. Mech., 36, No. 9, 1119–1149 (2000).

    ADS  MATH  Google Scholar 

  67. P. R. Heyliger, “A note on the static behavior of simply-supported laminated piezoelectric cylinder,” Int. J. Solids Struct., 34, No. 29, 3781–3794 (1997).

    MATH  Google Scholar 

  68. P. R. Heyliger and S. Brooks, “Exact solution for piezoelectric laminates in cylinder bending,” J. Appl. Mech., 63, No. 4, 903–910 (1994).

    MATH  Google Scholar 

  69. P. R. Heyliger and G. Ramirez, “Free vibrations of laminated circular piezoelectric plates and discs,” J. Sound Vibr., 229, No. 4, 935–956 (2000).

    ADS  MATH  Google Scholar 

  70. M. Hussein and P. R. Heyliger, “Discrete layer analysis of axisymmetric vibrations of laminated piezoelectric cylinders,” J. Sound Vibr., 192, No. 5, 995–1013 (1996).

    ADS  MATH  Google Scholar 

  71. N. Kharouf and P. R. Heyliger, “Axisymmetric free vibrations of homogeneous and laminated piezoelectric cylinders,” J. Sound Vibr., 174, No. 4, 539–561 (1994).

    ADS  MATH  Google Scholar 

  72. K. G. Khoroshev and Yu. A. Glushchenko, “The two-dimensional electroelasticity problems for multiconnected bodies situated under electric potential difference action,” Int. J. Solids Struct., 49, No. 18, 2703–2711 (2012).

    Google Scholar 

  73. K. G. Khoroshev and Yu. A. Glushchenko, “Plane electroelastical problem for a cracked piezoelectric half-space subject to remote electric field action,” Europ. J. Mech. Solids, 82, 1–20 (2020).

    MATH  Google Scholar 

  74. Z. B. Kuanz, Theory of Electroelasticity, Springer-Verlag, Shanghai (2014).

    Google Scholar 

  75. I. A. Loza, “Axisymmetric acoustoelectrical wave propagation in a hollow circularly polarized cylindrical waveguide,” Sov. Appl. Mech., 20, No. 12, 1103–1106 (1984).

    ADS  Google Scholar 

  76. I. A. Loza, “Propagation of nonaxisymmetric waves in hollow piezoceramic cylinder with radial polarization,” Sov. Appl. Mech., 21, No. 1, 22–27 (1985).

    ADS  MATH  Google Scholar 

  77. I. A. Loza, “Free vibrations of piezoceramic hollow cylinders with radial polarization,” J. Math. Sci., 174, No. 3, 295–302 (2011).

    Google Scholar 

  78. I. A. Loza, “Torsional vibrations of piezoceramic hollow cylinders with circular polarization,” J. Math. Sci., 180, No. 2, 146–152 (2012).

    Google Scholar 

  79. I. A. Loza, K. V. Medvedev, and N. A. Shul’ga, “Propagation of acoustoelectric waves in a planar layer made of piezoelectrics of hexagonal syngony,” Sov. Appl. Mech., 23, No. 7, 611–615 (1987).

    ADS  MATH  Google Scholar 

  80. I. A. Loza, K. V. Medvedev, and N. A. Shul’ga, “Propagation of nonaxisymmetric acoustoelectric waves in layered cylinders,” Sov. Appl. Mech., 23, No. 8, 703–706 (1987).

    ADS  MATH  Google Scholar 

  81. I. A. Loza and N. A. Shul’ga, “Effect of electrical boundary conditions on the propagation of axisymmetric acoustoelectrc waves in a hollow cylinder with axial polarization,” Sov. Appl. Mech., 23, No. 9, 832–839 (1987).

    ADS  Google Scholar 

  82. I. A. Loza and N. A. Shul’ga, “Forced axisymmetric vibrations of a hollow piezoceramic sphere with an electrical method of excitation,” Sov. Appl. Mech., 26, No. 8, 703–706 (1990).

    MATH  Google Scholar 

  83. H. S. Paul, “Torsional vibration of circular cylinder of piezoelectric 7-quartz,” Arch. Mech. Stosow., No. 5, 127–134 (1962).

    MATH  Google Scholar 

  84. H. S. Paul, “Vibration of circular cylindrical shells of piezoelectric silver iodide crystals,” J. Acoust. Soc. Amer., 40, No. 5, 1077–1080 (1966).

    ADS  Google Scholar 

  85. H. S. Paul, V. K. Nelson, and K. Vazhapadi, “Flexural vibration of piezoelectric composite cylinder,” J. Acoust. Soc. Amer., 99, No. 1, 309–313 (1996).

    ADS  Google Scholar 

  86. L. Pochhammer, “Ueber die fortpflanzungsgeschwindigkeiten kleiner schwingungen in einem unbegrenzten isotropen kreiscylinder,” J. Reine Angew. Math., 81, 324–336 (1876).

    MathSciNet  MATH  Google Scholar 

  87. D. A. Sarvanos and P. R. Heyliger, “Mechanics and computational models for laminated piezoelectric beams, plates, and shells,” Appl. Mech. Rev., 52, 305–320 (1999).

    ADS  Google Scholar 

  88. N. A. Shul’ga, “Propagation of harmonic waves in anisotropic piezoelectric cylinders. Homogeneous piezoceramic waveguides,” Int. Appl. Mech., 38, No. 8, 933–953 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  89. N. A. Shul’ga, A. Ya. Grigorenko, and T. L. Efimova, “Elastic wave propagation in hollow anisotropy cylinders,” Int. Appl. Mech., 32, No. 5, 357–362 (1996).

    MATH  Google Scholar 

  90. N. A. Shul’ga, A. Ya. Grigorenko, and I. A. Loza, “Axisymmetric electroelastic waves in a hollow piezoelectric ceramic cylinder,” Sov. Appl. Mech., 20, No. 1, 23–28 (1984).

    ADS  Google Scholar 

  91. N. A. Shul’ga, A. Ya. Grigorenko, and T. L. Efimova, “Propagation of nonaxisymmetric acoustoelectric waves in a hollow cylinder,” Sov. Appl. Mech., 20, No. 6, 517–521 (1984).

    ADS  MATH  Google Scholar 

  92. N. A. Shul’ga and I. A. Loza, “Axial vibrations of a hollow piezoceramic ball with axial polarization,” J. Sov. Math., 36, 3296–3300 (1992).

    Google Scholar 

  93. J. Wang and Z. Shi, “Models for designing radially polarized multilayer piezoelectric/elastic composite cylindrical transducers,” J. Intelligent Mater. Syst. Struct., 27, No. 4, 500–511 (2016).

    Google Scholar 

  94. J. Yang, An Introduction to the Theory of Piezoelectricity, Springer, Berlin (2005).

    MATH  Google Scholar 

  95. O. C. Zienkiewicz and R. L. Tailor, The Finite Element Method, McGraw-Hill, New York (1989).

    Google Scholar 

  96. O. C. Zienkiewicz, R. L. Tailor, and J. M. Too, “Reduced integration technique in general analysis of plates and shells,” Int. J. Numer. Meth. Eng., 3, No. 2, 275–290 (1971).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Grigorenko.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 56, No. 5, pp. 3–55, September–October 2020.

This study was sponsored by the budget program “Support for Priority Areas of Scientific Research” (KPKVK).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorenko, A.Y., Grigorenko, Y.M. & Loza, I.A. Numerical Analysis of Dynamical Processes in Inhomogeneous Piezoceramic Cylinders (Review)*. Int Appl Mech 56, 523–571 (2020). https://doi.org/10.1007/s10778-020-01034-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-020-01034-6

Keywords

Navigation