Skip to main content
Log in

Analytical Solution of the Problem of Thermoelastic Deformation of a Nonuniformly Rotating Multilayer Disk

  • Published:
International Applied Mechanics Aims and scope

Explicit analytical solution to the problem of the strain–stress state of a narrow multilayer disk with a radial alternation of layers is presented. The disk rotates with acceleration, in an axisymmetric temperature field, under the action of normal and tangential loads uniformly distributed on its cylindrical surfaces. The relations are obtained by solving the system of equations of the plane problem of elasticity in a polar coordinate system, given a discretely inhomogeneous structure of the disk. The solution obtained gives the distribution of stresses and displacements throughout the disk layers and canbe used to address a wide range of applied problems and methods of optimal design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Vasil’ev, Mechanics of Composite Material Structures [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  2. S. A. Viunov, Yu. I. Gusev, A. V. Karpov, et al., Configuration and Design of Aircraft Gas Turbine Engines [in Russian], Mashinostroenie, Moscow (1989).

  3. I. V. Demianushko and I. A. Birger, Rotating Disks Strength Design [in Russian], Mashinostroenie, Moscow (1978).

    Google Scholar 

  4. A. A. Inozemtsev, M. A. Nikhamkin, and V. L. Sandratskiy, Fundamental Issues of Designing Aircraft Engines and Power Engineering Plants, Vol. 2: Compressors. Combustion Chambers. Turbine Afterburner Chambers. Output Devices [in Russian], Mashinostroenie, Moscow (2008).

    Google Scholar 

  5. S. G. Lekhnitskii, Anisotropic Plates [in Russian], OGIZ, Gostekhizdat, Moscow (1947).

    Google Scholar 

  6. S. G. Lekhnitskii, Theory of Elasticity of Anisotropic Body [in Russian], Nauka, Moscow (1977).

    MATH  Google Scholar 

  7. G. S. Skubichevskii, Aircraft Gas Turbine Engines: Configuration and Design of Parts [in Russian], Mashinostroenie, Moscow (1969).

    Google Scholar 

  8. S. P. Timoshenko and J. Goodyear, Theory of Elasticity, McGraw-Hill, New York (1970).

    Google Scholar 

  9. J. Ari-Gur and Y. Stavsky, “On rotating polar-orthotropic circular discs,” Int. J. Solids Struct., 17, 57–67 (1981).

    Article  Google Scholar 

  10. M. Bayat, B. B. Sahari, M. Saleem, A. M. S. Hamouda, E. Mahdi, and J. N. Reddy, “Thermo elastic analysis of functionally graded rotating discs with temperature-dependent material properties: uniform and variable thickness,” Int. J. Mech. Mater. Des., 5, 263–279 (2009).

    Article  Google Scholar 

  11. H. Gallioglu, M. Topcu, and G. Altan, “Stress analysis of curvilinearly orthotropic rotating discs under mechanical and thermal loading,” J. Reinf. Plast. Compos., 24, 831–838 (2005).

    Article  Google Scholar 

  12. C. I. Chang, “Stresses and displacements in rotating anisotropic discs with variable densities,” AIAA J., 14, No. 1, 116–118 (1976).

    Article  ADS  Google Scholar 

  13. C. Chree, “The stresses and strains in isotropic elastic solid ellipsoid in equilibrium under bodily forces derivable from a potential of the second degree,” Proc. Roy. Soc. of London., 58, 39–59 (1995).

    MATH  Google Scholar 

  14. A. N. Eraslan and T. Akis, “On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disc problems,” Acta Mech., 181, 43–63 (2006).

    Article  Google Scholar 

  15. S. Essa and H. Argeso, “Elastic analysis of variable profile and polar orthotropic FGM rotating discs for a variation function with three parameters,” Acta Mech., 228, No. 11, 3877–3899 (2017).

    Article  MathSciNet  Google Scholar 

  16. A. V. Goryk and S. B. Kovalchuk, “Elasticity theory solution of the problem on plane bending of a narrow layered cantilever bar by loads at its end,” Mech. Comp. Mater., 54, No. 2, 179–190 (2018).

    Article  Google Scholar 

  17. G. V. Gurushankar, “Thermal stresses in a rotating, nonuniform, anisotropic disc of varying thickness and density,” J. Strain Anal. Eng., 10, 137–142 (1975).

    Article  Google Scholar 

  18. C. O. Horgan and A. M. Chan, “The stress response of functionally graded isotropic linearly elastic rotating discs,” J. Elast., 55, 219–230 (1999).

    Article  Google Scholar 

  19. S. A. H. Kordkheili and R. Naghdabadi, “Thermoelastic analysis of a functionally graded rotating disc,” Compos. Struct., 79, No. 4, 508–516, (2007).

    Article  Google Scholar 

  20. K. N. Koo, “Elastic stresses and failure of rotating cross-ply laminate discs,” J. Mech. Sci. Technol., 23, 1508–1514 (2009).

    Article  Google Scholar 

  21. A. E. H. Love, Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge (1959).

    Google Scholar 

  22. D. N. S. Murthy and A. N. Sherbourne, “Elastic stresses in anisotropic discs of variable thickness,” Int. J. Mech. Sci., 12, 627–640 (1970).

    Article  Google Scholar 

  23. X. L. Peng and X. F. Li, “Elastic analysis of rotating functionally graded polar orthotropic discs,” Int. J. Mech. Sci., 60, 84–91 (2012).

    Article  Google Scholar 

  24. T. Y. Reddy and H. Srinath, “Elastic stresses in a rotating anisotropic annular disc of variable thickness and variable density,” Int. J. Mech. Sci., 16, 85–89 (1974).

    Article  Google Scholar 

  25. R. C. Tang and S. F. Adams, “Stress in a rotating cylinder and variable thickness disc of anisotropic materials,” J. Comp. Mat., 4, No. 4, 419–421 (1970).

    Article  Google Scholar 

  26. V. Vullo and F. Vivio, “Elastic stress analysis of non-linear variable thickness rotating discs subjected to thermal load and having variable density along the radius,” Int. J. Solids Struct., 45, 5337–5355 (2008).

    Article  Google Scholar 

  27. N. G. Wu and J. H. Ramsey, “Stresses in a layered rotating disc,” Int. J. Mech. Sci., 8, 629–639 (1966).

    Article  Google Scholar 

  28. L. H. You, X. Y. You, J. J. Zhang, and J. Li, “On rotating circular discs with varying material properties,” Z. Angew. Math. Phys., 58, 1068–1084 (2007).

    Article  MathSciNet  Google Scholar 

  29. A. M. Zenkour, “Stress distribution in rotating composite structures of functionally graded solid discs,” J. Mater. Process. Technol., 209, 3511–3517 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Koval’chuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 56, No. 2, pp. 104–119, March–April 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koval’chuk, S.B., Goryk, A.V. & Zinkovskii, A.P. Analytical Solution of the Problem of Thermoelastic Deformation of a Nonuniformly Rotating Multilayer Disk. Int Appl Mech 56, 216–230 (2020). https://doi.org/10.1007/s10778-020-01008-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-020-01008-8

Keywords

Navigation