Skip to main content
Log in

Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole

  • Published:
International Applied Mechanics Aims and scope

Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff–Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. M. Kuznetsov, “The SSS of a noncircular cylindrical shell with a notch under pressure nonuniformly distributed along the directrix,” in: Proc. Seminar of KFTI KF AN SSSR on Studies on the Theory of Plates and Shells [in Russian], issue 24, Izd. KGU, Kazan’ (1992). pp. 35–39.

  2. A. N. Guz, A. S. Kosmodamianskii, V. P. Shevchenko, et al., Stress Concentration, Vol. 7 of the 12-volume series Composite Mechanics [in Russian], A.S.K., Kyiv (1998).

  3. E. A. Storozhuk and A. V. Yatsura, “Analytical-numerical solution of static problems for noncircular cylindrical shells of variable thickness,” Int. Appl. Mech., 53, No. 3, 313–325 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. N. Guz, I. S. Chernyshenko, V. N. Chekhov, et al., Theory of Thin Shells Weakened by Holes, Vol. 1 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1980).

  5. Yu. Yu. Abrosov, V. A. Maximyuk, and I. S. Chernyshenko, “Influence of cross-sectional ellipticity on the deformation of a long cylindrical shell,” Int. Appl. Mech., 52, No. 5, 529–534 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  6. P. M. A. Areias, J. H. Song, and T. Belytschko, “A finite-strain quadrilateral shell element based on discrete Kirchhoff–Love constraints,” Int. J. Numer. Meth. Eng., 64, 1166–1206 (2005).

    Article  MATH  Google Scholar 

  7. K. J. Bathe and E. N. Dvorkin, “A four-node plate bending element based on Mindlin–Reissner plate theory and mixed interpolation,” Int. J. Numer. Meth. Eng., 21, No. 2, 367–383 (1985).

    Article  MATH  Google Scholar 

  8. Y. N. Chen and J. Kempner, “Buckling of an oval cylindrical shell under compression and asymmetric bending,” AIAA J., 14, No. 9, 1235–1240 (1976).

    Article  ADS  MATH  Google Scholar 

  9. I. S. Chernyshenko and E. A. Storozhuk, “Inelastic deformation of flexible cylindrical shells with a curvilinear hole,” Int. Appl. Mech., 42, No. 12, 1414–1420 (2006).

    Article  ADS  MATH  Google Scholar 

  10. Ya. M. Grigorenko and L. V. Kharitonova, “Deformation of flexible noncircular cylindrical shells under concurrent loads of two types,” Int. Appl. Mech., 43, No. 7, 754–760 (2007).

  11. A. N. Guz, E. A. Storozhuk, and I. S. Chernyshenko, “Nonlinear two-dimensional static problems for thin shells with reinforced curvilinear holes,” Int. Appl. Mech., 45, No. 12, 1269–1300 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. T. A. Kiseleva, Yu. V. Klochkov, and A. P. Nikolaev, “Comparison of scalar and vector FEM forms in the case of an elliptic cylinder,” J. Comp. Math. Math. Phys., 55, No. 3, 422–431 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Oterkus, E. Madenci, and M. Nemeth, “Stress analysis of composite cylindrical shells with an elliptical cutout,” J. Mech. Mater. Struct., 2, No. 4, 695–727 (2007).

    Article  Google Scholar 

  14. K. P. Soldatos, “Mechanics of cylindrical shells with non-circular cross-section: a survey,” Appl. Mech. Rev., 52, No. 8, 237–274 (1999).

    Article  ADS  Google Scholar 

  15. E. A. Storozhuk and I. S. Chernyshenko, “Stress distribution in physically and geometrically nonlinear thin cylindrical shells with two holes,” Int. Appl. Mech., 41, No. 11, 1280–1287 (2005).

    Article  ADS  MATH  Google Scholar 

  16. E. A. Storozhuk and A. V. Yatsura, “Exact solutions of boundary-value problems for noncircular cylindrical shells,” Int. Appl. Mech., 52, No. 4, 386–397 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  17. R. C. Tennyson, M. Booton, and R. D. Caswell, “Buckling of imperfect elliptical cylindrical shells under axial compression,” AIAA J., 9, No. 2, 250–255 (1971).

    Article  ADS  Google Scholar 

  18. S. P. Timoshenko, Strength of Materials, Part II. Advanced Theory and Problems, 2nd ed., D. Van Nostrand Company, New York (1941).

  19. F. Tornabene, N. Fantuzzi, M. Bacciocchi, and R. Dimitri, “Free vibrations of composite oval and elliptic cylinders by the generalized differential quadrature method,” Thin-Walled Struct., 97, 114–129 (2015).

    Article  Google Scholar 

  20. G. Yamada, T. Irie, and Y. Tagawa, “Free vibrations of non-circular cylindrical shells with variable circumferential profile,” J. Sound Vibr., 95, No. 1, 117–126 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Storozhuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 53, No. 6, pp. 49–56, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storozhuk, E.A., Chernyshenko, I.S. & Pigol’, O.V. Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole. Int Appl Mech 53, 647–654 (2017). https://doi.org/10.1007/s10778-018-0847-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-018-0847-5

Keywords

Navigation