Skip to main content
Log in

Domain decomposition methods applied to solve frictionless-contact problems for multilayer elastic bodies

  • Published:
International Applied Mechanics Aims and scope

An Erratum to this article was published on 17 November 2010

A parallel Dirichlet–Dirichlet domain-decomposition algorithm for solving frictionless-contact problems for elastic bodies made of composite materials is proposed and justified. Numerical results that demonstrate the effectiveness of the approach and its software implementation are presented

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Hlavacek, J. Haslinger, J. Necas, and J. Lovisek, Solution of Variational Inequalities in Mechanics, Springer, New York (1988).

    MATH  Google Scholar 

  2. R. Glowinski, J.-L. Lions, and R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam (1981).

    MATH  Google Scholar 

  3. I. Dyyak, S. Matysyak, and I. Prokopyshyn, “A finite- and boundary-element domain-decomposition algorithm for plane problems of elasticity with independent subdomain partitions,” Fiz.-Mat. Model. Inform. Technol., 7, 40–51 (2008).

    Google Scholar 

  4. A. S. Kravchuk, Variational and Quasivariational Inequalities in Mechanics [in Russian], MGAPI, Moscow (1997).

    Google Scholar 

  5. J. L. Lions, Some Methods for Solving Nonlinear Boundary-Value Problems [in French], Dunod, Paris (1969).

    Google Scholar 

  6. I. I. Vorovich and V. M. Alexandrov (eds.), Contact Mechanics [in Russian], Fizmatlit, Moscow (2001).

    Google Scholar 

  7. B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izd. Mosk. Univ., Moscow (1984).

    MATH  Google Scholar 

  8. A. N. Podgornyi, P. P. Gontarovskii, B. N. Kirkach, et al., Contact Problems for Structural Members [in Russian], Naukova Dumka, Kyiv (1989).

    Google Scholar 

  9. I. Prokopyshyn, “Parellel domain-decomposition algorithms for frictionless-contact problems of elastiticty,” Visn. Lviv. Univ., Ser. Prikl. Mat. Inform., 14, 123–133 (2008).

    Google Scholar 

  10. J. Cea, Optimization: Theory and Algorithms, Springer-Verlag, Berlin–New York (1978).

  11. A. Chernov, M. Maischak, and E. P. Stephan, “A priori error estimates for penalty BEM for contact problems in elasticity,” Comput. Meth. Appl. Mech. Eng., 196, 3871–3880 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Eck and B. I. Wohlmuth, “Convergence of a contact-Neumann iteration for the solution of two-body contact problems,” Math. Models Meth. Appl. Sci., 13, No. 8, 1103–1118 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  13. Ya. M. Grigorenko and O. A. Avramenko, “Influence of geometrical and mechanical parameters on the stress–strain state of closed nonthin conical shells,” Int. Appl. Mech., 41, No. 10, 1119–1127 (2008).

    Article  Google Scholar 

  14. A. Ya. Grigorenko and T. L. Efimova, “Using spline-approximation to solve problems of axisymmetric free vibration of thick-walled orthotropic cylinders,” Int. Appl. Mech., 41, No. 10, 1137–1147 (2008).

    Article  Google Scholar 

  15. A. Ya. Grigorenko, I. I. Dyiak, and I. I. Prokopyshyn, “Domain decomposition method with hybrid approximations applied to solve problems of elasticity,” Int. Appl. Mech., 41, No. 11, 1213–1222 (2008).

    Article  Google Scholar 

  16. Ya. M. Grigorenko, A. Ya. Grigorenko, and L. I. Zakhariichenko, “Influence of geometrical parameters on the stress state of longitudinally corrugated elliptic cylindrical shells,” Int. Appl. Mech., 42, No. 2, 187–192 (2008).

    Google Scholar 

  17. S. Hueber and B. Wohlmuth, “A primal–dual active set strategy for non-linear multibody contact problems,” Comp. Meth. Appl. Mech. Eng., 194, 3147–3166 (2005).

    Article  MathSciNet  Google Scholar 

  18. A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids, WIT Press, Southampton–Boston (2000).

    Google Scholar 

  19. N. Kikuchi and J. T. Oden, Contact Problem in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia (1988).

    Google Scholar 

  20. R. Krause and B. I. Wohlmuth, “A Dirichlet–Neumann type algorithm for contact problems with friction,” Computing and Visualization, 5, 139–148 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  21. S. J. Matysiak and C. WoŸniak, “Micromorphic effects in a modelling of periodic multilayered elastic composites,” Int. J. Eng. Sci., 25, 549–559 (1987).

    Article  MATH  Google Scholar 

  22. D. M. Perkowski, S. J. Matysiak, and R. Kulchytsky–Zhyhailo, “On contact problem of an elastic laminated half-plane with a boundary normal to layering,” Compos. Sci. Technol., 67, 2683–2690 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Grigorenko.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 46, No. 4, pp. 25–37, April 2010.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10778-010-0348-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorenko, A.Y., Dyyak, I.I. & Prokopyshyn, I.I. Domain decomposition methods applied to solve frictionless-contact problems for multilayer elastic bodies. Int Appl Mech 46, 388–399 (2010). https://doi.org/10.1007/s10778-010-0320-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-010-0320-6

Keywords

Navigation