Skip to main content
Log in

Nonlinear deformation and buckling of elastic inhomogeneous shells under thermomechanical loads

  • Published:
International Applied Mechanics Aims and scope

The paper outlines the fundamentals of the method of solving static problems of geometrically nonlinear deformation, buckling, and postbuckling behavior of thin thermoelastic inhomogeneous shells with complex-shaped midsurface, geometrical features throughout the thickness, or multilayer structure under complex thermomechanical loading. The method is based on the geometrically nonlinear equations of three-dimensional thermoelasticity and the moment finite-element scheme. The method is justified numerically. Results of practical importance are obtained in analyzing poorely studied classes of inhomogeneous shells. These results provide an insight into the nonlinear deformation and buckling of shells under various combinations of thermomechanical loads

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Alfutov, Fundamentals of Stability Analysis of Elastic Systems [in Russian], Mashinostroenie, Moscow (1978).

    Google Scholar 

  2. I. Ya. Amiro, O. A. Grachev, V. A. Zarutskii, et al., Stability of Ribbed Shells of Revolution [in Russian], Naukova Dumka, Kyiv (1987).

    Google Scholar 

  3. D. V. Babich, “Stability of thermosensitive shells nonuniformly heated throughout the thickness,” Dokl. AN Ukrainy, No. 4, 41–45 (1993).

    MathSciNet  Google Scholar 

  4. V. A. Bazhenov, E. S. Dekhtyaryuk, N. A. Solovei, and O. P. Krivenko, “Generating finite-element models of complex shells,” in: Proc. Int. Sci. Conf. on Architecture of Shells and Strength Design of Thin-Walled and Engineering Structures of Complex Shape [in Russian], Izd. RUDN, Moscow (2001), pp. 30–34.

    Google Scholar 

  5. V. A. Bazhenov, O. P. Krivenko, and M. O. Solovei, “Effect of thermomechanical loading conditions on the stability and postbuckling behavior of shells with constant and stepwise-varying thickness,” Opir Mater. Teor. Sporud, 77, 30–42 (2005).

    Google Scholar 

  6. V. A. Bazhenov, O. P. Krivenko, and M. O. Solovei, “Stability of conical shells with linearly varying thickness,” Opir Mater. Teor. Sporud, 78, 46–51 (2006).

    Google Scholar 

  7. V. A. Bazhenov, O. P. Krivenko, and M. O. Solovei, “Analyzing solutions of buckling problems for shells with temperature-dependent material properties,” Opir Mater. Teor. Sporud, 79, 73–81 (2006).

    Google Scholar 

  8. V. A. Bazhenov, O. P. Krivenko, and M. O. Solovei, “Convergence and accuracy of solutions for a spatial finite element in problems of nonuniform heating of rods and beams,” Opir Mater. Teor. Sporud, 80, 54–65 (2006).

    Google Scholar 

  9. V. A. Bazhenov, O. P. Krivenko, and N. A. Solovei, “Assessment of the curvature effect on the stability and postbuckling behavior of ribbed panels,” Strength of Materials, 39, No. 6, 658–662 (2007).

    Article  Google Scholar 

  10. V. A. Bazhenov, A. S. Sakharov, N. A. Solovei, O. P. Krivenko, and N. Ayat, “Moment scheme of the finite-element method in problems of the strength and stability of flexible shells subjected to the action of forces and thermal factors,” Strength of Materials, 31, No. 5, 499–504 (1999).

    Article  Google Scholar 

  11. V. A. Bazhenov, M. O. Solovei, and O. P. Krivenko, “Nonlinear equations of deformation of ribbed thin multilayer shells under thermomechanical loading,” Opir Mater. Teor. Sporud, 64, 116–127 (1998).

    Google Scholar 

  12. V. A. Bazhenov, M. O. Solovei, O. P. Krivenko, and N. Ayat, “Stability of flexible shells under combined thermomechanical loading,” Opir Mater. Teor. Sporud, 65, 75–90 (1999).

    Google Scholar 

  13. V. A. Bazhenov, M. O. Solovei, and O. P. Krivenko, “Equations of the moment finite-element scheme in buckling problems for inhomogeneous shells under thermomechanical loading,” Opir Mater. Teor. Sporud, 66, 22–25 (1999).

    Google Scholar 

  14. V. A. Bazhenov, M. O. Solovei, and O. P. Krivenko, “Stability of smooth, ribbed, and cracked flexible shallow panels,” Opir Mater. Teor. Sporud, 67, 92–103 (2000).

    Google Scholar 

  15. V. A. Bazhenov, M. O. Solovei, and O. P. Krivenko, “Effect of the parameters of ribs on the stability of finite panels,” Opir Mater. Teor. Sporud, 69, 18–24 (2001).

    Google Scholar 

  16. V. A. Bazhenov, M. O. Solovei, and O. P. Krivenko, “Stability of flexible shallow panels with stepwise-varying thickness,” in: System Technologies: Mathematical Problems of Engineering Mechanics [in Ukrainian], Issue 2, Dnepropetrovsk (2001), pp. 7–11.

  17. V. A. Bazhenov, N. A. Solovei, and O. P. Krivenko, “Effect of variable thickness on the stability of shallow panels under uniform pressure,” in: System Technologies: Mathematical Problems of Engineering Mechanics [in Ukrainian], Issue 4, Dnepropetrovsk (2003), pp. 15–20.

  18. V. A. Bazhenov, N. A. Solovei, and O. P. Krivenko, “Stability of shallow shells of revolution with linearly varying thickness,” Aviats.-Kosmich. Tekh. Tekhnol., No. 2, 18–25 (2004).

    Google Scholar 

  19. V. A. Bazhenov, A. S. Sakharov, and V. K. Tsykhanovskii, “The moment finite-element scheme in problems of nonlinear continuum mechanics,” Int. Appl. Mech., 38, No. 6, 658–692 (2002).

    Article  Google Scholar 

  20. A. M. Belostotskii, “Finite-element models of spatial plates, shells, and solids: Creation, program implementation, and research,” Sb. Nauch. Trudov Gidroproekta, 100, 24–35 (1985).

    Google Scholar 

  21. V. V. Bolotin, “Nonlinear theory of elasticity and stability in large,” Rasch. Prochn., 3, 310–354 (1958).

    Google Scholar 

  22. D. Bushnell and S. Smith, “Stress and buckling of nonuniformly heated cylindrical and conical shells,” AIAA J., 9, No. 12, 2314–2321 (1971).

    Article  ADS  Google Scholar 

  23. D. V. Vainberg, E. A. Gotsulyak, and V. I. Gulyaev, “Thermomechanical instability of a deformable medium,” Sopr. Mater. Teor. Sooruzh., 16, 153–156 (1972).

    Google Scholar 

  24. N. V. Valishvili, Methods for Computer Design of Shells of Revolution [in Russian], Mashinostroenie, Moscow (1976).

    Google Scholar 

  25. P. M. Varvak, I. M. Buzun, A. S. Gorodetskii, et al., Finite-Element Method [in Russian], Vysshaya Shkola,

  26. L. F. Vakhlaeva and V. A. Krys’ko, “Stability of flexible sloping shells in a temperature field,” Int. Appl. Mech., No. 1, 12–18 (1983).

    Google Scholar 

  27. A. S. Vol’mir, “Modern problems in the theory of plates and shells in aircraft,” in: Important Problems of Aviation Science and Technology [in Russian], Mashinostroenie, Moscow (1984), pp. 77–87.

    Google Scholar 

  28. A. S. Vol’mir, Stability of Deformable Systems [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  29. K. S. Galiev, L. A. Gordon, and L. A. Rozin, “Forming a universal stiffness matrix in the FEM,” Izv. VNIIG, 105, 174–188 (1974).

    Google Scholar 

  30. K. Z. Galimov, Fundamentals of the Nonlinear Theory of Thin Shells [in Russian], Izd. KGU, Kazan (1975).

    Google Scholar 

  31. K. Z. Galimov and Kh. M. Mushtari, “Some issues of strength and stability of shells in nonuniform temperature field,” Tr. Fiz.-Tekh. Inst. KF AN SSSR, 1, 3–12 (1954).

    Google Scholar 

  32. V. V. Gnatyuk, V. V. Ulitin, and A. N. Snitko, “Experimental-theoretical study of the influence of imperfections on the stability of cylindrical panels subject to heating,” Strout. Mekh. Rasch. Sooruzh., No. 6, 35–38 (1987).

    Google Scholar 

  33. A. I. Golovanov and M. S. Kornishin, “Introduction to the finite-element method in statics of thin shells,” Kazan. Fiz.-Tekh. Inst. KF AN SSSR, Kazan (1990).

    Google Scholar 

  34. A. V. Gondlyakh, “Iterative analytical theory of deformation of multilayer shells,” Sopr. Mater. Teor. Sooruzh., 53, 33–37 (1988).

    Google Scholar 

  35. É. I. Grigolyuk and V. V. Kabanov, Stability of Shells [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  36. É. I. Grigolyuk and V. I. Shalashilin, Problems of Nonlinear Deformation: Parameter Continuation Method in Nonlinear Problems of Solid Mechanics, Nauka, Moscow (1988).

    Google Scholar 

  37. Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells of Variable Stiffness, Vol. 4 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1981).

    Google Scholar 

  38. Ya. M. Grigorenko and V. I. Gulyaev, “Nonlinear problems of shell theory and their solution methods (review),” Int. Appl. Mech., 27, No. 10, 929–947 (1991).

    MathSciNet  Google Scholar 

  39. Ya. M. Grigorenko and A. P. Mukoed, Solving Nonlinear Problems in the Theory of Shells on a Computer [in Russian], Vyshcha Shkola, Kyiv (1983).

    Google Scholar 

  40. A. N. Guz and I. Yu. Babich, Three-Dimensional Theory of Stability of Rods, Plates, and Shells [in Russian], Vyshcha Shkola, Kyiv (1980).

    MATH  Google Scholar 

  41. V. I. Gulyaev, V. A. Bazhenov, and E. A. Gotsulyak, Stability of Nonlinear Mechanical Systems [in Russian], Vyshcha Shkola, Lviv (1982).

    Google Scholar 

  42. J. Descloux, Méthode des Éléments Finis, Suisse, Lausanne (1973).

    Google Scholar 

  43. M. W. Johnson, Jr. and R. W. McLay, “Convergence of the finite element method in the theory of elasticity,” ASME, J. Appl. Mech., 35, No. 2, 274–278 (1968).

    MATH  Google Scholar 

  44. V. S. Ekel’chik, “Bending of rectangular orthotropic plates elastically fixed along the boundary,” TsNIITS, 36, 32–48 Moscow (1962).

  45. N. B. Erofeeva, “Bending of an orthotropic rectangular plate clamped along the boundary,” Izv. VUZov, Stroit. Arkhitekt., No. 7, 52–55 (1970).

  46. G. N. Zamula, K. M. Ierusalimskii, and G. S. Karpova, “Analysis of stability and heat resistance of complex reinforced structures,” Uch. Zap. TsAGI, 20, No. 4, 84–87 (1989).

    Google Scholar 

  47. O. C. Zienkiewicz, The Finite-Element Method in Engineering Science, McGraw-Hill, New York (1971).

    MATH  Google Scholar 

  48. O. C. Zienkiewicz, B. M. Irons, F. C. Scott, and J. S. Campbell, “Three-dimensional stress analysis,” in: B. F. de Veubeke (ed.), High Speed Computing of Elastic Structures, Universite de Liege (1971).

  49. V. P. Il’in and V. V. Karpov, Stability of Ribbed Shells against Large Displacements [in Russian], Stroiizdat, Leningrad (1986).

    Google Scholar 

  50. B. Ya. Kantor, Nonlinear Problems in the Theory of Inhomogeneous Shallow Shells [in Russian], Naukova Dumka, Kyiv (1974).

    Google Scholar 

  51. V. V. Kirichevskii and A. S. Sakharov, Nonlinear Problems in the Thermomechanics of Structures Made of Weakly Compressible Elastomers [in Russian], Budivel’nyk, Kyiv (1992).

    Google Scholar 

  52. A. P. Kiselev, Development of the Finite-Element Method in Studies of the Linear and Nonlinear Deformation of Two and Three-Dimensional Elastic Bodies [in Russian], Author’s Abstract of DSc Thesis, Volgograd Gos. Sel’khoz. Akad., Volgograd (2007).

    Google Scholar 

  53. V. N. Kislookii, N. V. Koval’chuk, A. D. Legostaev, and N. A. Solovei, “Stability analysis of reinforced slightly conical shells with large holes in geometrically nonlinear formalism,” Int. Appl. Mech., 20, No. 11, 1037–1042 (1984).

    Google Scholar 

  54. V. N. Kislookii, A. S. Sakharov, and N. A. Solovei, “Moment scheme of the finite-element method in geometrically nonlinear problems regarding the strength and stability of shells,” Strength of Materials, 9, No. 7, 808–817 (1977).

    Article  Google Scholar 

  55. A. D. Kovalenko, Thermoelasticity [in Russian], Vyshcha Shkola, Kyiv (1975).

    Google Scholar 

  56. N. V. Koval’chuk and N. A. Solovei, “The stress-strain state and stability of conical shells,” Int. Appl. Mech., 24, No. 5, 484–488 (1988).

    Google Scholar 

  57. W. T. Koiter, “Elastic stability and postbuckling behavior,” in: R. E. Langee (ed.), Proc. Symp. on Nonlinear Problems, Univ. Press, Madison (1963), pp. 257–275.

    Google Scholar 

  58. V. A. Koldunov, A. N. Kudinov, and O. I. Cherepanov, “Three-dimensional stability analysis of shells,” in: Proc. 6th Int. Sci. Symp. on Modern Problems of Plasticity and Stability in Solid Mechanics (Tver, March 1–3, 2006) [in Russian], TGTU, Tver (2006), pp. 31–39.

    Google Scholar 

  59. V. A. Koldunov and O. I. Cherepanov, “Numerical model for design of shells and shell structures using three-dimensional nonlinear theory of elasticity,” in: Complex Systems: Data Processing, Modeling, and Optimization [in Russian], TvGU, Tver (2002), pp. 48–59.

    Google Scholar 

  60. O. P. Krivenko, Stability of Flexible Shells with Variable Thickness Parameters under Thermomechanical Loading [in Ukrainian], Author’s Abstract of PhD Thesis, Kyiv. Nats. Univ. Budivn. Arkhitekt., Kyiv (2005).

  61. O. P. Krivenko, “Influence of combined boundary conditions on the stability of shallow shells of revolution,” Opir. Mater. Teor. Sooruzh., 81, 84– 90 (2007).

    Google Scholar 

  62. O. P. Krivenko, “Influence of combined boundary conditions on the stability of shallow panels with square planform,” Opir. Mater. Teor. Sooruzh., 82, 65–70 (2008).

    Google Scholar 

  63. V. I. Kucheryuk, A. D. Dorogin, and V. P. Bochagov, “Design of multilayer plates by an experimental-theoretical method,” Sroit. Mekh. Rasch. Sooruzh., No. 2, 72–74 (1983).

    Google Scholar 

  64. S. G. Lekhnitskii, Anisotropic Plates [in Russian], Gostekhizdat, Moscow (1957).

    Google Scholar 

  65. C.-L. Liao and J. N. Reddy, “Analysis of anisotropic stiffened, composite laminates using a continuum-based shell element,” Comput. Struct., 34, No. 6, 805–815 (1990).

    Article  MATH  Google Scholar 

  66. S. S. Marchenko, Octagonal Three-Dimensional Finite Element with Vector Approximation of Displacement Fields for Analysis of the Deformation of Shells of Revolution [in Russian], Author’s Abstract of PhD Thesis, Volgogr. Gos. Arkhitekt.-Stroit. Univ., Volgograd (2004).

  67. V. V. Gorev, B. Yu. Uvarov, V. V. Filippov, et al., Elements of Steel Structures, Vol. 1 of the three-volume series Metal Structures [in Russian], Vyssh. Shk., Moscow (1997).

    Google Scholar 

  68. À. S. Sakharov, V. N. Kislookii, V. V. Kirichevskii, et al., Finite-Element Method in Solid Mechanics [in Russian], Vyshcha Shkola, Kyiv (1982).

    Google Scholar 

  69. K. H. Murray, “Comments on the convergence of finite element solutions,” AIAA J., 8, No. 4 (1970).

  70. V. A. Bazhenov, A. S. Sakharov, A. V. Gondlyakh, and S. L. Mel’nikov, Nonlinear Problems in the Mechanics of Multilayer Shells [in Russian], NII Strout. Mekh., Kyiv (1994).

    Google Scholar 

  71. A. P. Nikolaev and A. P. Kiselev, “Using the three-dimensional theory to design shells,” in: Proc. Int. Sci. Conf. on Architecture of Shells and Strength Analysis of Thin-Walled Building and Engineering Structures of Complex Shape [in Russian], Izd. RUDN, Moscow (2001), pp. 29–30.

    Google Scholar 

  72. A. P. Nikolaev and A. P. Kiselev, “Design of shells based on three-dimensional finite elements in the form of a triangular prism and octagon,” in: Proc. Int. Sci. Conf. on Architecture of Shells and Strength Analysis of Thin-Walled Building and Engineering Structures of Complex Shape [in Russian], Izd. RUDN, Moscow (2001), pp. 319–323.

    Google Scholar 

  73. W. Nowacki, Theory of Elasticity [in Polish], PWN, Warsaw (1970).

    Google Scholar 

  74. V. V. Novozhilov, Theory of Thin Shells [in Russian], Sudpromgiz, Leningrad (1962).

    Google Scholar 

  75. P. M. Ogibalov and V. F. Gribanov, Thermal Stability of Plates and Shells [in Russian], Izd. MGU, Moscow (1968).

    Google Scholar 

  76. J. T. Oden, Finite Elements of Nonlinear Continua, McGraw-Hill, New York (1971).

    Google Scholar 

  77. A. V. Perel’muter and V. I. Slivker, Design Models of Structures and Possibility to Analyze Them [in Russian], Izd. Stal’, Kyiv (2002).

    Google Scholar 

  78. V. G. Piskunov and V. E. Verizhenko, Linear and Nonlinear Problems for Layered Structures [in Russian], Budivel’nyk, Kyiv (1986).

    Google Scholar 

  79. Ya. S. Podstrigach and R. N. Shvets, Thermoelasticity of Thin Shells [in Russian], Naukova Dumka, Kyiv (1983).

    Google Scholar 

  80. Problems of Stability in Structural Mechanics [in Russian], Stroiizdat, Moscow (1965).

  81. V. F. Gribanov, I. A. Krokhin, N. G. Panichkin, V. M. Sannikov, and Yu. I. Fomitchev, Strength, Stability, and Vibrations of Thermostressed Shell Structures [in Russian], Mashinostroenie, Moscow (1990).

    Google Scholar 

  82. V. N. Kislookii, A. D. Legostaev, A. S. Sakharov, N. A. Solovei, E. N. Il’chenko, and V. N. Kritskii, Prochnost’-75. Three-Dimensional Structures Design Software System, Part III, Section Distos: Statics and Dynamics of Shell Structures [in Russian], Manual Inv. No. 5759 dep. at RFAP IK AN USSR, Kyiv (1980).

  83. A. O. Rasskazov, I. I. Sokolovskaya, and N. A. Shul’ga, Theory and Design of Layered Orthotropic Plates and Shells [in Russian], Naukova Dumka, Kyiv (1986).

    Google Scholar 

  84. R. B. Rikards, Finite-Element Method in the Theory of Shells and Plates [in Russian], Zinatne, Riga (1988).

    MATH  Google Scholar 

  85. A. S. Sakharov, “A moment finite-element scheme (MFES) that allows for rigid-body displacements,” Sopr. Mater. Teor. Sooruzh., 24, 147–156 (1974).

    Google Scholar 

  86. A. S. Sakharov, “Moment theory of the finite-element method,” in: Proc. VII Int. Congr. on Application of Mathematics and Engineering Sciences [in Russian], Weimar, 22, No. 2 (1975), pp. 218–227.

  87. A. S. Sakharov and N. A. Solovei, “Convergence analysis of the finite-element method in problems of plates and shells,” in: Spatial Structures of Buildings and Installations [in Russian], Issue 3, Stroiizdat, Moscow (1977), pp. 10–15.

    Google Scholar 

  88. M. O. Solovei, “Modeling the thermoelastic properties of multilayer materials in buckling problems for inhomogeneous shells,” Opir. Mater. Teor. Sporud, 73, 17–30 (2003).

    Google Scholar 

  89. M. O. Solovei, “A modified three-dimensional finite element for modeling thin inhomogeneous shells,” Opir. Mater. Teor. Sporud, 80, 96–113 (2006).

    Google Scholar 

  90. M. O. Solovei, Stability and Postbuckling Behavior of Elastic Inhomogeneous Shells under Thermomechanical Loading [in Russian], Author’s Abstract of DSc Thesis, Kyivs’k. Nats. Univ. Budivn. Arkhitekt, Kyiv (2008).

  91. N. A. Solovei, “Analysis of the stress–strain and stability of plates and shells with stepwise-variable stiffness using a modified finite element,” Sopr. Mater. Teor. Sooruzh, 43, 30–35 (1983).

    Google Scholar 

  92. N. A. Solovei, “Implementation of an algorithm for solving systems of nonlinear equations in buckling problems for shells in PROCHNOST’-75,” Vych. Prikl. Math., 62, 39–51 (1987).

    Google Scholar 

  93. N. A. Solovei, “Solution of geometrically nonlinear buckling problems for ribbed multilayer shells based on the moment finite-element scheme,” Sopr. Mater. Teor. Sooruzh, 60, 110–117 (1992).

    Google Scholar 

  94. N. A. Solovei and O. P. Krivenko, “Influence of curvature on the stability of flexible shallow panels subject to nonuniform heating,” Opir. Mater. Teor. Sporud, 66, 18–21 (1999).

    Google Scholar 

  95. N. A. Solovei and O. P. Krivenko, “Comparative analysis of solutions to buckling problems for flexible shells subject to different laws of nonuniform heating,” Opir. Mater. Teor. Sporud, 70, 104–109 (2002).

    Google Scholar 

  96. N. A. Solovei and O. P. Krivenko, “Stability analysis of smooth (with linearly varying thickness) and faceted (with stepwise varying thickness) shallow spherical shells,” Opir. Mater. Teor. Sporud, 72, 83–96 (2003).

    Google Scholar 

  97. N. A. Solovei and O. P. Krivenko, “Influence of heating on the stability of smooth shallow spherical shells with linearly varying thickness,” Opir. Mater. Teor. Sporud, 74, 60–73 (2004).

    Google Scholar 

  98. N. A. Solovei and O. P. Krivenko, “Influence of heating on the stability of faceted shallow spherical shells,” Opir. Mater. Teor. Sporud, 75, 80–86 (2004).

    Google Scholar 

  99. N. A. Solovei, I. A. Tregubova, and O. A. Mazurkov, “Calculating the exact volume of curvilinear finite elements,” Prikl. Geometr. Inzhen. Grafika, Budivel’nyk, 48, 40–44 (1989).

    Google Scholar 

  100. G. Strang and G. J. Fix, An Analysis of the Finite-Element Method, Prentice-Hall, Englewood Cliffs (1973).

    MATH  Google Scholar 

  101. S. P. Timoshenko, Stability of Bars, Plates, and Shells [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  102. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York (1959).

    Google Scholar 

  103. J. W. Hutchison and W. T. Koiter, “Postbucking theory,” Appl. Mech. Rev., Vol. 23, 1353–1366 (1970).

    Google Scholar 

  104. V. N. Yushkin, Three-Dimensional Stress–Strain State of Articulated Cylindrical Shells based on the FEM [in Russian], Author’s Abstract of PhD Thesis, Volgogr. Gos. Arkhit.-Strout. Univ., Volgograd (2004).

  105. ANSYS User’s Manual for revision 5.6. Vol. I. Procedure; Vol. II. Command; Vol. III. Elements; Vol. IV. Theory.

  106. R. Hauptmann, S. Doll, M. Harnau, and K. Schweizerhof, “Solid-shell elements with linear and quadratic shapefunctuions at large deformations with nearly incompressible materials,” Comput. Struct., 79, No. 18, 1671–1685 (2001).

    Article  Google Scholar 

  107. V. V. Kiricevskij, A. S. Sacharov, and N. A. Solovej, “FEM-Algorithmen fur geometrisch und physikalisch nichtlineare Aufgaben der Statik und Stabilitat raumlicher Konstruktionen,” Technische Mechanik, 8, No. 2, 63–70 (1987).

    Google Scholar 

  108. S. Klinkel, F. Gruttmann, and W. Wagner, “A continuum based three-dimensional shell element for laminated structures,” Comput. Struct., 71, No. 1, 43–62 (1999).

    Article  Google Scholar 

  109. N. A. Solovei, “Geometrical modelling of shells with complex form by finite element system for strength analysis,” Prikl. Geometr. Inzhen. Grafika, 69, 245–251 (2001).

    Google Scholar 

  110. G. Zboinski and W. Ostachowicz, “An algorithm of a family of 3D-based, solid-to-shell transition, hpq/hp-adaptive finite elements,” J. Theor. Appl. Mech. (Poland), 38, No. 4, 791–806 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Solovei.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 45, No. 9, pp. 3–40, September 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhenov, V.A., Solovei, N.A. Nonlinear deformation and buckling of elastic inhomogeneous shells under thermomechanical loads. Int Appl Mech 45, 923–953 (2009). https://doi.org/10.1007/s10778-010-0236-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-010-0236-1

Keywords

Navigation