Skip to main content
Log in

On two models in the three-dimensional theory of stability of composites

  • Published:
International Applied Mechanics Aims and scope

A comparative analysis is made of the infinite-fiber and finite-fiber models in the three-dimensional theory of stability of composites. The results analyzed have been obtained using the three-dimensional linearized theory of stability of deformable bodies. A historical sketch is given of the theory of stability for and approaches used in the mechanics of laminated and fibrous composite materials

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Guz, “On setting up a stability theory of unidirectional fibrous materials,” Int. Appl. Mech., 5, No. 2 156–162 (1969).

    MathSciNet  Google Scholar 

  2. A. N. Guz, “Determining the theoretical ultimate strength of reinforced materials under compression,” Dokl. AN USSR, Ser. A, No. 3, 236–238 (1969).

  3. A. N. Guz, Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kyiv (1971).

    Google Scholar 

  4. A. N. Guz, Stability of Elastic Bodies under Finite Strains [in Russian], Naukova Dumka, Kyiv (1973).

    Google Scholar 

  5. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kyiv (1986).

    Google Scholar 

  6. A. N. Guz, Fracture Mechanics of Compressed Composites [in Russian], Naukova Dumka, Kyiv (1990).

    Google Scholar 

  7. A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Plane problems of stability of composite materials with a finite-size filler,” Mech. Comp. Mater., 36, No. 1, 49–54 (2000).

    Article  Google Scholar 

  8. A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Solving plane problems of three-dimensional stability for ribbon-reinforced composites,” Dop. NAN Ukrainy, No. 4, 47–51 (2000).

  9. A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Interaction of short fibers in a matrix during buckling: A plane problem,” in: Problems of Mechanics: Collection of Papers (on the occasion of the 90th birth of A. Yu. Ishlinskii) [in Russian], Fizmatgiz, Moscow (2003), pp. 331–341.

    Google Scholar 

  10. V. A. Dekret, “A note on the three-dimensional stability of ribbon-reinforced composites under plane strain,” Dop. NAN Ukrainy, No. 11, 66–70 (2000).

  11. V. A. Dekret, “Solving the plane buckling problem for a composite reinforced with two short fibers,” Dop. NAN Ukrainy, No. 8, 37–40 (2003).

  12. V. A. Dekret, “Plane buckling problem for a composite reinforced with two short parallel fibers,” Dop. NAN Ukrainy, No. 12, 38–41 (2003).

  13. V. A. Dekret, “Stability of a composite reinforced with a periodic row of collinear short fibers,” Dop. NAN Ukrainy, No. 11, 47–50 (2004).

  14. V. A. Dekret, “Stability of a composite reinforced with a periodic row of parallel short fibers,” Dop. NAN Ukrainy, No. 12, 41–44 (2004).

  15. B. W. Rosen, “Mechanics of composite strengthening,” in: Fiber Composite Materials, American Society of Metals, Metals Park, OH (1965), pp. 37–75.

    Google Scholar 

  16. I. Yu. Babich, A. N. Guz, and V. N. Chekhov, “The three-dimensional theory of stability of fibrous and laminated materials,” Int. Appl. Mech., 37, No. 9, 1103–1141 (2001).

    Article  Google Scholar 

  17. V. A. Dekret, “Two-dimensional buckling problem for a composite reinforced with a periodic row of collinear short fibers,” Int. Appl. Mech., 42, No. 6, 684–691 (2006).

    Article  Google Scholar 

  18. N. F. Dow and I. J. Gruntfest, “Determination of most needed potentially possible improvements in materials for ballistic and space vehicles,” TIRS 60_SD 389, General Electric Co., Space Sci. Lab., June (1960).

  19. A. N. Guz, “The stability of orthotropic bodies,” Int. Appl. Mech., 3, No. 5, 17–22 (1967).

    MathSciNet  Google Scholar 

  20. A. N. Guz, “On the hydroelasticity problems for a viscous liquid and elastic bodies with initial stresses,” Dokl. Akad. Nauk SSSR, 251, No. 2, 305–308 (1980).

    Google Scholar 

  21. A. N. Guz, “On the linearized theory of failure of brittle bodies with initial stresses,” Dokl. Akad. Nauk SSSR, 252, No. 5, 1085–1088 (1980).

    MathSciNet  Google Scholar 

  22. A. N. Guz, “On the representation of solutions to linearized Stockes-Navier equations,” Dokl. Akad. Nauk SSSR, 253, No. 4, 825–827 (1980).

    ADS  MathSciNet  Google Scholar 

  23. A. N. Guz, “Breakaway cracks in elastic bodies with initial stresses,” Dokl. Akad. Nauk SSSR, 254, No. 3, 571–574 (1980).

    MathSciNet  Google Scholar 

  24. A. N. Guz, “A criterion of solid body destruction during compression along cracks (two-dimensional problem),” Dokl. Akad. Nauk SSSR, 259, No. 6, 1315–1318 (1981).

    Google Scholar 

  25. A. N. Guz, “A criterion of solid body destruction during compression along cracks (a 3-dimensional problem),” Dokl. Akad. Nauk SSSR, 261, No. 1, 42–45 (1981).

    MathSciNet  Google Scholar 

  26. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Berlin (1999).

    MATH  Google Scholar 

  27. A. N. Guz, “Constructing the three-dimensional theory of stability of deformable bodies,” Int. Appl. Mech., 37, No. 1, 1–37 (2001).

    Article  Google Scholar 

  28. A. N. Guz, “Elastic waves in bodies with initial (residual) stresses,” Int. Appl. Mech., 38, No. 1, 23–59 (2002).

    Article  MathSciNet  Google Scholar 

  29. A. N. Guz, “Establishing the fundamentals of the theory of stability of mine workings,” Int. Appl. Mech., 39, No. 1, 20–48 (2003).

    Article  Google Scholar 

  30. A. N. Guz, “On one two-level model in the mesomechanics of compression fracture of cracked composites,” Int. Appl. Mech., 39, No. 3, 274–285 (2003).

    Article  Google Scholar 

  31. A. N. Guz, “Design models in linearized solid mechanics,” Int. Appl. Mech., 40, No. 5, 506–516 (2004).

    Article  MathSciNet  Google Scholar 

  32. A. N. Guz, “Three-dimensional theory of stability of a carbon nanotube in a matrix,” Int. Appl. Mech., 42, No. 1, 19–31 (2006).

    Article  MathSciNet  Google Scholar 

  33. A. N. Guz and V. N. Chekhov, “Problems of folding in the Earth's stratified crust,” Int. Appl. Mech., 43, No. 2, 127–159 (2007).

    Article  Google Scholar 

  34. A. N. Guz and V. A. Dekret, “Interaction of two parallel short fibers in the matrix at loss of stability,” CMES, 13, No. 3, 165–170 (2006).

    Google Scholar 

  35. A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Solution of plane problems of the three-dimensional stability of a ribbon-reinforced composite,” Int. Appl. Mech., 36, No. 10, 1317–1328 (2000).

    Article  Google Scholar 

  36. A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Two-dimensional stability problem for two interacting short fibers in composite: In-line arrangement,” Int. Appl. Mech., 40, No. 9, 994–1001 (2004).

    Article  Google Scholar 

  37. A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Planar stability problem of composite weakly reinforced by short fibers,” Mech. Advanc. Mater. Struct., 12, 313–317 (2005).

    Article  Google Scholar 

  38. A. N. Guz and I. A. Guz, “Analytical solution of stability problem for two composite half-planes compressed along interfacial cracks,” Composites: B, 31, No. 5, 405–418 (2000).

    Article  Google Scholar 

  39. A. N. Guz and I. A. Guz, “The stability of the interface between two bodies compressed along interface cracks. 1. Exact solutions for the case of unequal roots,” Int. Appl. Mech., 36, No. 4, 482–491 (2000).

    Article  Google Scholar 

  40. A. N. Guz and I. A. Guz, “The stability of the interface between two bodies compressed along interface cracks. 2. Exact solutions for the case of equal roots,” Int. Appl. Mech., 36, No. 5, 615–622 (2000).

    Article  MathSciNet  Google Scholar 

  41. A. N. Guz and I. A. Guz, “The stability of the interface between two bodies compressed along interface cracks. 3. Exact solutions for the combined case of equal and unequal roots,” Int. Appl. Mech., 36, No. 6, 759–768 (2000).

    Article  MathSciNet  Google Scholar 

  42. A. N. Guz and I. A. Guz, “Mixed plane problems in linearized solid mechanics: Exact solutions,” Int. Appl. Mech., 40, No. 1, 1–29 (2004).

    Article  MathSciNet  Google Scholar 

  43. A. N. Guz and I. A. Guz, “On models in the theory of stability of multi-walled carbon nanotubes,” Int. Appl. Mech., 42, No. 6, 617–628 (2006).

    Article  MathSciNet  Google Scholar 

  44. A. N. Guz and Yu. V. Kokhanenko, “Numerical solution of three-dimensional stability problems for laminated and ribbon-reinforced composites,” Int. Appl. Mech., 37, No. 11, 1369–1399 (2001).

    Article  MathSciNet  Google Scholar 

  45. A. N. Guz and Yu. N. Lapusta, “Three-dimensional problems of the near-surface instability of fiber composites in compression (model of a piecewise-uniform medium) (survey),” Int. Appl. Mech., 35, No. 7, 641–670 (1999).

    Article  Google Scholar 

  46. A. N. Guz and F. G. Makhort, “The physical fundamentals of the ultrasonic nondestructive stress analysis of solids,” Int. Appl. Mech., 36, No. 9, 1119–1149 (2000).

    Article  Google Scholar 

  47. A. N. Guz, A. A. Roger, and I. A. Guz, “Developing a compressive failure theory of nanocomposites,” Int. Appl. Mech., 41, No. 3, 233–255 (2005).

    Article  Google Scholar 

  48. A. N. Guz and J. J. Rushchitsky, “Nanomaterials: On mechanics of nanomaterials,” Int. Appl. Mech., 39, No. 11, 1271–1293 (2003).

    Article  Google Scholar 

  49. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Establishing fundamentals of the mechanics of nanocomposites,” Int. Appl. Mech., 43, No. 3, 247–271 (2007).

    Article  Google Scholar 

  50. A. N. Guz and A. P. Zhuk, “On the hydrodynamic forces in an acoustic field in a viscous liquid,” Dokl. Akad. Nauk SSSR, 266, No. 1, 32–35 (1982).

    MathSciNet  Google Scholar 

  51. A. N. Guz and A. P. Zhuk, “Motion of solid particles in a liquid under the action of an acoustic field: The mechanism of radiation pressure,” Int. Appl. Mech., 40, No. 3, 246–265 (2004).

    Article  Google Scholar 

  52. I. A. Guz, “Spatial nonsymmetric problems of the theory of stability of laminar highly elastic composite materials,” Int. Appl. Mech., 25, No. 11, 1080–1085 (1989).

    MATH  Google Scholar 

  53. I. A. Guz, “Stability of composite under compression along 2 microcracks situated on the interlayers boundary,” Dokl. Akad. Nauk SSSR, 328, No. 4, 437–439 (1993).

    Google Scholar 

  54. I. A. Guz, “Stability of composite under compression along the cracks situated on the boundary between layers,” Dokl. Akad. Nauk SSSR, 325, No. 3, 455–458 (1992).

    Google Scholar 

  55. I. A. Guz and A. N. Guz, “Stability of two different half-planes in compression along interfacial cracks: Analytical solutions,” Int. Appl. Mech., 37, No. 7, 906–912 (2001).

    Article  MathSciNet  Google Scholar 

  56. I. A. Guz, A. A. Roger, A. N. Guz, and J. J. Rushchitsky, “Developing the mechanical models for nanomaterials,” Composites: A, 38, 1234–1250 (2007).

    Article  Google Scholar 

  57. Ch. Jochum and J. C. Grandidier, “Microbuckling elastic modelling approach of a single carbon fibre embedded in an epoxy matrix,” Comp. Sci. Techn., 64, 2441–2449 (2004).

    Article  Google Scholar 

  58. Yu. V. Kokhanenko, “Numerical study of three-dimensional stability problems for laminated and ribbon-reinforced composites,” Int. Appl. Mech., 37, No. 3, 317–345 (2001).

    Article  MathSciNet  Google Scholar 

  59. L. J. Broutman and R. H. Krock (eds.), Modern Composite Materials, Addison Wesley, Reading, Massachusetts (1967).

    Google Scholar 

  60. H. S. Katz and J. V. Milewski (eds.), Handbook of Fillers and Reinforcements for Plastics, Van Nastrand Reinhold Company, New York (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Prikladnaya Mekhanika, Vol. 44, No. 8, pp. 3–31, August 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guz, A.N., Dekret, V.A. On two models in the three-dimensional theory of stability of composites. Int Appl Mech 44, 839–854 (2008). https://doi.org/10.1007/s10778-008-0098-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-008-0098-y

Keywords

Navigation