Skip to main content
Log in

Similarities and differences between the Murnaghan and Signorini descriptions of the evolution of quadratically nonlinear hyperelastic plane waves

  • Published:
International Applied Mechanics Aims and scope

Abstract

An attempt is made to outline chronologically the five-stage development of the theory of nonlinear elastic waves. Next, attention is focused on the differences and similarities in the analytic description of polarized plane and cylindrical hyperelastic waves propagating in a nonlinear elastic material described by the Murnaghan model. Also, comparison is made of these waves when they propagate in materials described by the Murnaghan and Signorini potentials, which are rather different

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).

    Google Scholar 

  2. A. N. Guz, Elastic Waves in Prestressed Bodies [in Russian], Vol. 1, Naukova Dumka, Kyiv (1987).

    Google Scholar 

  3. A. I. Guz, F. G. Makhort, O. I. Gushcha, and V. K. Lebedev, Fundamentals of Ultrasonic Nondestructive Stress Analysis of Solids [in Russian], Naukova Dumka, Kyiv (1984).

    Google Scholar 

  4. V. I. Erofeev, Wave Processes in Solids with Microstructure [in Russian], Izd. MGU, Moscow (1999).

    Google Scholar 

  5. L. K. Zarembo and V. A. Krasil’nikov, An Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  6. V. V. Krylov and V. A. Krasil’nikov, An Introduction to Physical Acoustics [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  7. A. I. Lurie, Theory of Elasticity, Springer, Berlin (1999).

    Google Scholar 

  8. A. I. Lurie, Nonlinear Theory of Elasticity, North-Holland, Amsterdam (1990).

    MATH  Google Scholar 

  9. R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], in two parts, Nauka, Moscow (1987).

    Google Scholar 

  10. J. J. Rushchitsky and S. I. Tsurpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. S. P. Timoshenka, Kyiv (1998).

    Google Scholar 

  11. J. J. Rushchitsky and Ya. V. Simchuk, “Quadratically nonlinear wave equation for axisymmetric cylindrical hyperelastic waves propagating in the radial direction,” Dop. NAN Ukrainy, No. 10, 56–64 (2005).

  12. J. J. Rushchitsky and Ya. V. Simchuk, “Theoretical and numerical analysis of quadratically nonlinear axisymmetric cylindrical waves in micro-and nanocomposites,” Dop. NAN Ukrainy, No. 3, 47–55 (2006).

  13. J. J. Rushchitsky, Elements of Mixture Theory [in Russian], Naukova Dumka, Kyiv (1991).

    Google Scholar 

  14. L. I. Sedov, Mechanics of Continuous Media, World Scientific, Singapore (1997).

    MATH  Google Scholar 

  15. A. Bedford, G. S. Drumheller, and H. J. Sutherland “On modeling the dynamics of composite materials,” in: S. Nemat-Nasser, Mechanics Today, Vol. 3, Pergamon Press, New York (1976), pp. 1–54.

    Google Scholar 

  16. A. Bedford and G. S. Drumheller, “Theories of immiscible and structured mixtures,” Int. J. Eng. Sci., 2, No. 8, 863–960 (1983).

    Article  MathSciNet  Google Scholar 

  17. C. Cattani and J. J. Rushchitsky, “Cubically nonlinear elastic waves: wave equations and methods of analysis,” Int. Appl. Mech., 39, No. 10, 1115–1145 (2003).

    Article  MathSciNet  Google Scholar 

  18. C. Cattani and J. J. Rushchitsky, “Cubically nonlinear versus quadratically nonlinear elastic waves: Main wave effects,” Int. Appl. Mech., 39, No. 12, 1361–1399 (2003).

    Article  MathSciNet  Google Scholar 

  19. C. Cattani and J. J. Rushchitsky, “Nonlinear cylindrical waves in Signorini’s hyperelastic material,” Int. Appl. Mech., 42, No. 7, 765–774 (2006).

    Article  Google Scholar 

  20. C. Cattani and J. J. Rushchitsky, “Nonlinear plane waves in Signorini’s hyperelastic material,” Int. Appl. Mech., 42, No. 8, 895–903 (2006).

    Article  Google Scholar 

  21. C. Cattani, J. J. Rushchitsky, and S. V. Sinchilo, “Physical constants for one type of nonlinearly elastic fibrous micro-and nanocomposites with hard and soft nonlinearities,” Int. Appl. Mech., 41, No. 12, 1368–1377 (2005).

    Article  Google Scholar 

  22. D. S. Drumheller, Introduction to Wave Propagation in Nonlinear Fluids and Solids, Cambridge University Press, Cambridge (1998).

    Google Scholar 

  23. J. J. Rushchitsky, “Interaction of waves in solid mixtures,” Appl. Mech. Rev., 52, No. 2, 35–74 (1999).

    Article  Google Scholar 

  24. J. J. Rushchitsky, “Extension of the microstructural theory of two-phase mixtures to composite materials,” Int. Appl. Mech., 36, No. 5, 586–614 (2000).

    Google Scholar 

  25. J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for plane-strain state,” Int. Appl. Mech., 41, No. 5, 496–505 (2005).

    Article  Google Scholar 

  26. J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for axisymmetric and other states,” Int. Appl. Mech., 41, No. 6, 646–656 (2005).

    Article  Google Scholar 

  27. J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Primary analysis of evolution,” Int. Appl. Mech., 41, No. 7, 770–777 (2005).

    Article  Google Scholar 

  28. J. J. Rushchitsky, “On the types and number of plane waves in hypoelastic materials,” Int. Appl. Mech., 41, No. 11, 1288–1298 (2005).

    Article  Google Scholar 

  29. J. J. Rushchitsky, “Similarities and distinctions in evolution of hyperelastic waves with plane and cylindrical fronts in materials with the nanolevel internal structure,” Int. Appl. Mech., 42, No. 9, 976–994 (2006).

    Google Scholar 

  30. A. Signorini, “Transformazioni termoelastiche finite,” Annali di Matematica Pura ed Applicata, Serie IV, 22, 33–143 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Signorini, “Transformazioni termoelastiche finite,” Annali di Matematica Pura ed Applicata, Serie IV, 30, 1–72 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Truesdell, A First Course in Rational Continuum Mechanics, The John Hopkins University, Baltimore (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 42, No. 9, pp. 41–58, September 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rushchitsky, J.J., Cattani, C. Similarities and differences between the Murnaghan and Signorini descriptions of the evolution of quadratically nonlinear hyperelastic plane waves. Int Appl Mech 42, 997–1010 (2006). https://doi.org/10.1007/s10778-006-0170-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0170-4

Keywords

Navigation