Skip to main content
Log in

On the types and number of plane waves in hypoelastic materials

  • Published:
International Applied Mechanics Aims and scope

Abstract

General principles are formulated for modeling the elastic deformation of materials and analyzing plane waves in nonlinearly elastic materials such as hyperelastic, hypoelastic, and those governed by the general law of elasticity. The results of studying the propagation of plane waves in hypoelastic materials are further outlined. The influence of initial stresses and initial velocities on the types and number of plane waves is studied. Wave effects characteristic of hypoelastic materials are predicted theoretically. One of such effects is blocking of certain types of plane waves by initial stresses

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Green and J. E. Adkins, Large Elastic Deformations and Nonlinear Continuum Mechanics, Clarendon Press, Oxford (1960).

    Google Scholar 

  2. A. N. Guz, A. P. Zhuk, and F. G. Makhort, Waves in a Prestressed Layer [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  3. A. N. Guz, F. G. Makhort, O. I. Gushcha, and V. K. Lebedev, Fundamentals of Ultrasonic Nondestructive Stress Analysis of Solids [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  4. A. N. Guz, Waves in Bodies with Initial (Residual) Stresses [in Russian], Inst. Mekh. S. P. Timoshenko NAN Ukrainy, A.S.K., Kiev (2004).

    Google Scholar 

  5. V. I. Erofeev, Wave Processes in Microstructural Solids [in Russian], Izd. Mosk. Univ., Moscow (1999).

    Google Scholar 

  6. V. H. Kauderer, Nichtlineare Mechanik, Springer-Verlag, Berlin (1958).

    Google Scholar 

  7. A. I. Lur’e, Elasticity Theory [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  8. J. J. Rushchitsky and S. I. Tsurpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. S. P. Timoshenka, Kiev (1998).

    Google Scholar 

  9. F. I. Fedorov, Theory of Elastic Waves in Crystals [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  10. J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam-London-New York (1973).

    Google Scholar 

  11. E. Dieulesaint and D. Royer, Ondes Élastiques Dans Les Solides. Application au Traitement du Signal, Masson et Cie, Paris (1974).

    Google Scholar 

  12. T. Doyle and I. N. Ericksen, “Nonlinear elasticity,” in: Advances in Applied Mechanics, Vol. 4, Acad. Press, New York (1956), pp. 53–115.

    Google Scholar 

  13. D. S. Drumheller, Introduction to Wave Propagation in Nonlinear Fluids and Solids, Cambridge Univ. Press, Cambridge (1998).

    Google Scholar 

  14. A. C. Eringen, Nonlinear Theory of Continuous Media, McGraw-Hill, New York (1964).

    Google Scholar 

  15. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Springer Verlag, Berlin (1999).

    Google Scholar 

  16. A. N. Guz and J. J. Rushchitsky, “Nanomaterials: On the mechanics of nanomaterials,” Int. Appl. Mech., 39, No. 11, 1271–1293 (2003).

    Article  Google Scholar 

  17. P. Germain, Cours de Mécanique des Milieux Continus, Tome 1. Theorie Generale, Masson et Cie, Paris (1973).

    Google Scholar 

  18. W. Prager, Einfuhrung in die Kontinuumsmechanik, Birkhauser Verlag, Basel-Stuttgart (1961).

    Google Scholar 

  19. J. J. Rushchitsky, “Interaction of waves in solid mixtures,” Appl. Mech. Rev., 52, No. 2, 35–74 (1999).

    Google Scholar 

  20. J. J. Rushchitsky, “Extension of the microstructural theory of two-phase mixtures to composite materials,” Int. Appl. Mech., 36, No. 5, 586–614 (2000).

    Google Scholar 

  21. J. J. Rushchitsky and C. Cattani, “Cubically nonlinear elastic waves: wave equations and methods of analysis,” Int. Appl. Mech., 39, No. 10, 1115–1145 (2003).

    MathSciNet  Google Scholar 

  22. J. J. Rushchitsky and C. Cattani, “Cubically nonlinear versus quadratically nonlinear elastic waves: Main wave effects,” Int. Appl. Mech., 39, No. 12, 1361–1399 (2003).

    MathSciNet  Google Scholar 

  23. C. Truesdell, A First Course in Rational Continuum Mechanics, The John Hopkins University, Baltimore, Maryland (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 96–107, November 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rushchitsky, J.J. On the types and number of plane waves in hypoelastic materials. Int Appl Mech 41, 1288–1298 (2005). https://doi.org/10.1007/s10778-006-0035-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0035-x

Keywords

Navigation