Skip to main content

Advertisement

Log in

Unmanned Aerial Vehicle-Aided 5G NR for Enhanced Network in Urban Scenarios

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

Recently, Unmanned Aerial Vehicles (UAVs) are being utilized to ensure a better solution to a dependable and cost-effective wireless communication network from the sky. The adoption of UAVs has been considered as an alternative supplement of the existing cellular networks, to accomplish better transmission efficiency with enhanced coverage and network capacity. This article has represented some urban wireless communication scenarios where UAVs can be utilized to ensure better coverage, enhancement of efficiency and capacity. After that, to establish the effectiveness of UAVs in wireless communication, the paper has included several performance scenarios (path loss) after utilizing UAVs in the wireless network. This article might be informative to those who are engaged in research regarding UAV assisted wireless communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. L. Zhang, H. Zhao, S. Hou, Z. Zhao, H. Xu, X. Wu, Q. Wu, and R. Zhang, “A Survey on 5G Millimeter Wave Communications for UAV-Assisted Wireless Networks”, IEEE Access, vol. 7, pp. 117460–117504, 2019.

    Article  Google Scholar 

  2. C. M. Cheng, P. H. Hsiao, H. T. Kung, and D. Vlah, “Maximizing throughput of UAV-relaying networks with the load-carry-and-deliver paradigm,” in Proceedings of IEEE Wireless Communication Network Conference, pp. 4417–4424, Hong Kong, March 2007.

  3. S. Hayat, E. Yanmaz, and R. Muzaffar, “Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint,” IEEE Communication Surveys and Tutorials, vol. 18, no. 4, pp. 2624–2661, 2016.

    Article  Google Scholar 

  4. L. Gupta, R. Jain, and G. Vaszkun, “Survey of important issues in UAV communication networks,” IEEE Communication Surveys and Tutorials, vol. 18, no. 2, pp. 1123–1152, 2016.

    Article  Google Scholar 

  5. N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 899–922, 2016.

    Article  Google Scholar 

  6. C. L. Krishna and R. R. Murphy, “A review on cybersecurity vulnerabilities for unmanned aerial vehicles,” in Proceedings of IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai, China, 2017, pp. 194–199.

  7. W. Khawaja, I. Guvenc, D. Matolak, U. C. Fiebig, and N. Schneckenberger, “A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles,” arXiv preprint arXiv: 1801.01656.

  8. A. A. Khuwaja, Y. Chen, N. Zhao, M. S. Alouini, and P. Dobbins, “A survey of channel modeling for UAV communications,” IEEE Communication Surveys Tutorials, vol. 20, no. 4, pp. 2804–2821, 2018.

    Article  Google Scholar 

  9. X. Cao, P. Yang, M. Alzenad, X. Xi, D. Wu, and H. Yanikomeroglu, “Airborne communication networks: A survey,” IEEE Journal of Selected Areas of Communication, vol. 36, no. 9, pp. 1907–1926, 2018.

    Article  Google Scholar 

  10. I. Bekmezci, O. K. Sahingoz, and S. Temel, “Flying ad-hoc networks (FANETs): A survey,” Elsevier - Ad Hoc Networks, vol. 11, no. 3, pp. 1254–1270, May 2013.

    Article  Google Scholar 

  11. Z. Xiao, P. Xia, and X. G. Xia, “Enabling UAV cellular with millimeterwave communication: Potentials and approaches,” IEEE Communications Magazine, vol. 54, no. 5, pp. 66–73, 2016.

    Article  Google Scholar 

  12. M. Mozaffari, W. Saad, M. Bennis, Y. H. Nam, and M. Debbah, “A tutorial on UAVs for wireless networks: Applications, challenges, and open problems,” IEEE Communication Surveys and Tutorials, vol. 21, no. 3, pp. 2334–2360, March 2019.

    Article  Google Scholar 

  13. A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, and A. García-Rodríguez, and J. Yuan, “Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges,” IEEE Communication Surveys and Tutorials, vol. 21, no. 4, pp. 3417–3442, 2019.

    Article  Google Scholar 

  14. B. Li, Z. Fei, and Y. Zhang, “UAV communications for 5G and beyond: Recent advances and future trends,” IEEE Internet Things Journal, vol. 6, no. 2, pp. 2241–2263, December 2018.

    Article  Google Scholar 

  15. S. Sekander, H. Tabassum, and E. Hossain, “Multi-tier drone architecture for 5G/B5G cellular networks: Challenges, trends, and prospects,” IEEE Communication Magazine, vol. 56, no. 3, pp. 96–103, March 2018.

    Article  Google Scholar 

  16. H. Shakhatreh, A. Sawalmeh, A. I. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges,” IEEE Access, vol. 7, pp. 48572–48634, April 2019.

    Article  Google Scholar 

  17. M. Lu, M. Bagheri, A. P. James, and T. Phung, “Wireless charging techniques for UAVs: A review, re-conceptualization, and extension,” IEEE Access, vol. 6, pp. 29865–29884, May 2018.

    Article  Google Scholar 

  18. M. E. Mkiramweni, C. Yang, J. Li, and Z. Han, “Game-theoretic approaches for wireless communications with unmanned aerial vehicles,” IEEE Wireless Communications, vol. 25, no. 6, pp. 104–112, December 2018.

    Article  Google Scholar 

  19. M. Hassanalian and A. Abdelkefi, “Classifications, applications, and design challenges of drones: A review”, Elsevier - Progress in Aerospace Sciences, vol. 7, pp. 99–131, May 2017.

    Article  Google Scholar 

  20. T. Long et al., “Energy neutral internet of drones,“ in IEEE Communications Magazine, vol. 56, no. 1, pp. 22–28, 2018.

    Article  Google Scholar 

  21. X. He et al., “Design of energy management system for a small solar-powered unmanned aerial vehicle,“ 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Charlotte, NC, 2018, pp. 1–4.

  22. S. Morton et al., “Solar powered UAV: Design and experiments,“ 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, 2015, pp. 2460–2466.

  23. H. Wang et al., “Analysis of the Characteristics of Solar Cell Array Based on MATLAB/Simulink in Solar Unmanned Aerial Vehicle,“ in IEEE Access, vol. 6, pp. 21195–21201, 2018.

    Article  Google Scholar 

  24. S. Jashnani, T.R. Nada, M. Ishfaq, A. Khamker, and P. Shaholia, “Sizing and preliminary hardware testing of solar powered UAV”, Elsevier - The Egyptian Journal of Remote Sensing and Space Sciences, vol. 16, no. 2, pp. 189–198, December 2013.

    Article  Google Scholar 

  25. S. Sun, T. S. Rappaport, T. A. Thomas, A. Ghosh, H. C. Nguyen, I. Z. Kovács, I. Rodriguez, O. Koymen, and A. Partyka, “Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications,” IEEE Transactions on Vehicular Technology, vol. 65, no. 5, 2016.

  26. A. M. Al-Samman, T. A. Rahman, M. H. Azmi, and M. N. Hindia, “Large-scale path loss models and time dispersion in an outdoor line-of-sight environment for 5G wireless communications,” Elsevier - AEU - International Journal of Electronics and Communications, vol. 70, no. 11, pp. 1515–1521, 2016.

    Article  Google Scholar 

  27. F. Qamar, MHD N. Hindia, K. Dimyati, K. A. Noordin, M. B. Majed, T. A. Rahman, and I. S. Amiri, “Investigation of future 5G-IoT millimeter-wave network performance at 38 GHz for urban microcell outdoor environment,” MDPI Electronics, vol. 8, no. 5, pp. 1-26, May 2019

    Google Scholar 

  28. L. Zhou, L. Xiao, Z. Yang, J. Li, J. Lian, and S. Zhou, “Path loss model based on cluster at 28 GHz in the indoor and outdoor environments”, Springer - Science China Information Sciences, vol. 60, June 2017.

  29. K. Haneda et al., “5G 3GPP-like channel models for outdoor urban microcellular and macrocellular environments,” 2016 IEEE 83rd Vehicular Technology Conference (VTC 2016-Spring), Nanjing, China May 2016.

  30. X. Zhao, Q. Wang, S. Geng, Y. Zhang, J. Zhang, and J. Li, “Path loss modification and multi-user capacity analysis by dynamic rain models for 5G radio communications in millimeter waves,” IET Communications, vol. 13, no. 10, pp. 1488–1496, June 2019.

    Article  Google Scholar 

  31. U. Challita et al., “Machine learning for wireless connectivity and security of cellular-connected UAVs,“ in IEEE Wireless Communications, vol. 26, no. 1, pp. 28–35, 2019.

    Article  Google Scholar 

  32. A. Sanjab et al., “Prospect theory for enhanced cyber-physical security of drone delivery systems: A network interdiction game,“ 2017 IEEE International Conference on Communications (ICC), Paris, 2017, pp. 1–6.

  33. B. Li et al., “Physical-Layer Security in Space Information Networks: A Survey,“ in IEEE Internet of Things Journal, vol. 7, no. 1, pp. 33–52, January 2020.

    Article  Google Scholar 

  34. B. Li et al., “Secure UAV Communication Networks over 5G,“ in IEEE Wireless Communications, vol. 26, no. 5, pp. 114–120, 2019.

    Article  Google Scholar 

  35. Y. Zhou et al., “Multi-UAV-Aided Networks: Aerial-Ground Cooperative Vehicular Networking Architecture,“ in IEEE Vehicular Technology Magazine, vol. 10, no. 4, pp. 36–44, December 2015.

    Article  Google Scholar 

  36. Q. Zhang et al., “Data-aided doppler frequency shift estimation and compensation for UAVs,“ in IEEE Internet of Things Journal, vol. 7, no. 1, pp. 400–415, January 2020.

    Article  Google Scholar 

  37. J. Xu et al., “Energy efficient hybrid edge caching scheme for tactile internet in 5G,“ in IEEE Transactions on Green Communications and Networking, vol. 3, no. 2, pp. 483–493, June 2019.

    Article  Google Scholar 

  38. N. Zhang et al., “Synergy of Big Data and 5G wireless networks: opportunities, approaches, and challenges,“ in IEEE Wireless Communications, vol. 25, no. 1, pp. 12–18, 2018.

    Article  Google Scholar 

  39. J.-M. Martinez-Caro et al., “IoT system integrating unmanned aerial vehicles and LoRa technology: a performance evaluation study,” Hindawi – Wireless Communications and Mobile Computing, vol. 2019, pp. 1–12, November 2019.

  40. A. M. Al-Samman, T. A. Rahman et al., “Path loss model for outdoor parking environments at 28 GHz and 38 GHz for 5G wireless networks,” MDPI - Symmetry, vol. 10, no. 12, p. 672, 2018.

    Article  Google Scholar 

  41. S. Sun, T. S. Rappaport, M. Shafi, P. Tang, J. Zhang and P. J. Smith, “Propagation models and performance evaluation for 5G millimeter-wave bands,“ in IEEE Transactions on Vehicular Technology, vol. 67, no. 9, pp. 8422–8439, 2018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mobasshir Mahbub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahbub, M. Unmanned Aerial Vehicle-Aided 5G NR for Enhanced Network in Urban Scenarios. Int J Wireless Inf Networks 28, 104–115 (2021). https://doi.org/10.1007/s10776-020-00497-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-020-00497-1

Keywords

Navigation