Skip to main content
Log in

Performance Analysis of Communication System with Nonlinear Power Amplifier

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

A communication system with nonlinear Power Amplifier (PA) is considered. The PA nonlinearity forces the designer of communication system to choose proper Back-Off, which influences three major parameters of the communication system: (i) power efficiency, (ii) Adjacent Channel Power Ratio (ACPR), and (iii) bit rate expressed by Mutual Information (MI). Having these three parameters, we propose to evaluate the performance of a communication system with nonlinear PA using the fact that ACPR is dictated by the regulator/communication standard. In what follows we propose to find power efficiency and MI as a function of ACPR. To illustrate the usefulness of the proposed method, the Solid State Power Amplifier (SSPA), and two linearized versions of SSPA are considered. The first version is a perfectly linearized PA using pre-distortion resulting with Soft Envelope Limiter (SEL), and the second is the Feed-Forward (FF) architecture based on SSPA. For each of the PAs ACPR, power efficiency and MI are found. While the analysis of SSPA and SEL is mainly based on the existing literature, the analysis of FF may be considered as a new contribution. From the results of the analysis it is concluded that linearization improves the overall performance of communication system. It is also shown that the pre-distortion method (SEL) shows better performance than FF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. P. Banelli, Theoretical analysis and performance of OFDM signals in nonlinear fading channels, IEEE Transactions on Wireless Communications, Vol. 2, No. 2, pp. 284–293, 2003.

    Article  Google Scholar 

  2. E. Costa and S. Pupolin, M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise, IEEE Transactions on Communications , Vol. 50, No. 3, pp. 462–472, 2002.

    Article  Google Scholar 

  3. P. Banelli and S. Cacopardi, Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels, IEEE Transactions on Communications, Vol. 48, No. 3, pp. 430–441, March 2000.

    Article  Google Scholar 

  4. D. Dardari, V. Tralli and A. Vaccari, A theoretical characterization of nonlinear distortion effects in OFDM systems, IEEE Transactions on Communications, Vol. 48, No. 10, pp. 1755–1764, 2000.

    Article  Google Scholar 

  5. H. Ochiai, Performance analysis of peak power and band-limited OFDM system with linear scaling, IEEE Transactions on Wireless Communications, Vol. 2, No. 5, pp. 1055–1065, 2003.

    Article  Google Scholar 

  6. C. Liang, J. Jong, W. Stark and J. East, Nonlinear amplifier effects in communications systems, IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 8, pp. 1461–1466, 1999.

    Article  Google Scholar 

  7. A. Coskun and S. Demir, A mathematical characterization and analysis of a feedforward circuit for CDMA applications, IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, pp. 767–777, 2003.

    Article  Google Scholar 

  8. A. Ghadam, S. Burglechner, A. Gokceoglu, M. Valkama and A. Springer, Implementation and performance of DSP-oriented feedforward power amplifier linearizer, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 59, No. 2, pp. 409–425, 2012.

    Article  MathSciNet  Google Scholar 

  9. Y. Yang, Y. Woo and B. Kim, Optimization for error-canceling loop of the feedforward amplifier using a new system-level mathematical model, IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, pp. 475–482, 2003.

    Article  Google Scholar 

  10. P. Kenington, Efficiency of feedforward amplifiers, in IEE Proceedings, Part G—Circuits, Devices and Systems, Vol. 139, No. 5. IET, pp. 591–593, 1992.

  11. K. Parsons and P. Kenington, The efficiency of a feedforward amplifier with delay loss, IEEE Transactions on Vehicular Technology, Vol. 43, No. 2, pp. 407–412, 1994.

    Article  Google Scholar 

  12. S.-M. Han, O. Popov, S.-J. Park, D. Ahn, J. Lim, W.-S. Yoon, S. Pyo and Y.-S. Kim, Adaptive calibration method for am/pm distortion in nonlinear devices, in IEEE International Symposium on Radio-Frequency Integration Technology, 2009. RFIT 2009, 9 2009–Dec. 11 2009, pp. 76–79.

  13. I. Gutman and D. Wulich, On achievable rate of multicarrier with practical high power amplifier, in European Wireless 2012 (EW2012), Poznan, Poland, April 2012.

  14. T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley-Interscience, New York, NY, USA, 1991.

    Book  MATH  Google Scholar 

  15. H. Ochiai, On power amplifier efficiencies of linearly modulated signals with nonlinear distortion, in 2011 8th International Symposium on Wireless Communication Systems (ISWCS), pp. 397–401, Nov. 2011.

  16. A. Luzzatto and G. Shirazi, Wireless Transceiver Design: Mastering the Design of Modern Wireless Equipment and Systems. John Wiley & Sons, Hoboken, NJ, 2007.

    Book  Google Scholar 

  17. J. Bussgang, Crosscorrelation Functions of Amplitude-Distorted Gaussian Signals, Research Laboratory of Electronics, Massachusetts Institute of Technology, 1952.

  18. P. Banelli and S. Cacopardi, Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels, IEEE Transactions on Communications, Vol. 48, No. 3, pp. 430–441, 2000.

    Article  Google Scholar 

  19. I. Gutman and D. Wulich, Distribution of papr in low order OFDM with non equal amplitudes, in 2010 IEEE 26th Convention of Electrical and Electronics Engineers in Israel (IEEEI), Nov. 2010, pp. 000165–000169.

  20. M. Jeruchim, P. Balaban and K. Shanmugan, Simulation of Communication Systems: Modeling, Methodology and Techniques. Springer, New York, 2000.

    Google Scholar 

  21. C. Rapp, Effects of HPA-nonlinearity on 4-DPSK-OFDM-signal for digital sound broadcasting system, in Proceedings of 2nd European Conference on Satellite Communications, October 1991.

  22. S. Cripps, Rf power amplifiers for wireless communications, IEEE Microwave Magazine, Vol. 1, No. 1, pp. 64–64, 2000.

    Article  Google Scholar 

  23. H. E. Rowe, Memoryless nonlinearities with Gaussian inputs: elementary results, Bell System Technical Journal, Vol. 61, pp. 1519–1525, Sep. 1982.

    Article  Google Scholar 

  24. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ninth dover printing, tenth gpo printing ed., Dover, New York, 1972.

  25. A. Jeffrey and D. Hui-Hui, Bessel functions. in Handbook of Mathematical Formulas and Integrals. Academic Press, New York, 2008

  26. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Press, NY, USA, 1972.

    MATH  Google Scholar 

  27. F. Raab, P. Asbeck, S. Cripps, P. Kenington, Z. Popovic, N. Pothecary, J. Sevic and N. Sokal, Rf and microwave power amplifier and transmitter technologiespart 4, High Frequency Electronics, Vol. 2, No. 3, pp. 22–36, 2003.

    Google Scholar 

  28. K. Mekechuk, W. Kim, S. Stapleton and J. Kim, Linearizing power amplifiers using digital predistortion, EDA tools and test hardware, High Frequency Electronics, Vol. 3, No. 12, pp. 18–30, 2004.

    Google Scholar 

  29. J. Dawson and T. Lee, Feedback Linearization of RF Power Amplifiers, Springer, New York, 2004.

    Google Scholar 

  30. P. Kenington, High Linearity RF Power Amplifier Design, Artech House, Inc., Norwood, MA, 2000.

    Google Scholar 

  31. D. Pozar, Microwave Engineering, 3rd edition, Wiley, Danvers, MA, 2005.

    Google Scholar 

  32. A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic Processes, 4th edition, McGraw Hill, New York, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Gutman.

Additional information

Ilia Iofedov, Igor Gutman and Dov Wulich contributed equally to this study.

Appendix: PDF of the Received Signal

Appendix: PDF of the Received Signal

Since s and n are statistically independent, the PDF of \(y, {p_y}\left( {u,v} \right)\), is just a convolution of the PDFs of s and n [32]:

$$ \begin{aligned} {p_y}\left( {u,v} \right) =& {p_s}\left( {u,v} \right)*{p_n}\left( {u,v} \right) \\ =& \int\limits_{{\tau _u}} {\int\limits_{{\tau _v}} {{p_s}\left( {{\tau _u},{\tau _v}} \right)} } {p_n}\left( {{\tau _u} - u,{\tau _v} - v} \right)d{\tau _u}d{\tau _v}. \end{aligned} $$
(41)

For convenience, we convert the Cartesian coordinates of (9) to polar coordinates using \(u = r\cos \left( \theta \right)\) and \(v = r\sin \left( \theta \right)\); therefore we can rewrite (9) as

$$ H\left( y \right) = - \int\limits_{r \ge 0} {\int\limits_\theta {{p_y}\left( {r,\theta } \right)} } {\log _2}\left( {{p_y}\left( {r,\theta } \right)} \right)rdrd\theta $$
(42)

and (41) as

$$ \begin{aligned} {p_y}\left( {r,\theta } \right) =& \int\limits_{k \ge 0} {\int\limits_\varphi} {p_n}\left( {\sqrt {{k^2} + {r^2} - 2kr\cos \left( \varphi \right)} ,\varphi } \right)\\ \times& {p_s}\left( {k,\varphi } \right)kdkd\varphi. \end{aligned} $$
(43)

The PDF of the background noise is given by

$$ {p_n}\left( {r,\theta } \right) = \frac{1}{{\pi \sigma _n^2}}{e^{ - \frac{{{r^2}}}{{\sigma _n^2}}}}, $$
(44)

and the PDF of the received signal is obtained by substituting (44) in (43), and is given by

$$ \begin{aligned} {p_y}\left( r,\theta \right) =& \frac{1}{{\pi \sigma _n^2}}{e^{ - \frac{{{r^2}}}{{\sigma _n^2}}}}\int\limits_{k \ge 0} {\int\limits_\varphi {{e^{ - \frac{{{k^2} - 2rk\cos \left( \varphi \right)}}{{\sigma _n^2}}}}{p_s}\left( {k,\varphi } \right)kdkd\varphi } } \\ =&\frac{1}{{\pi \sigma _n^2}}{e^{ - \frac{{{r^2}}}{{\sigma _n^2}}}}\int\limits_{k \ge 0} {\int\limits_\varphi {{e^{ - \frac{{{k^2} - 2rk\cos \left( \varphi \right)}}{{\sigma _n^2}}}}\frac{{{p_{\left| s \right|}}\left( k \right)}}{2\pi}dkd\varphi } } \\ =& \frac{1}{{\pi \sigma _n^2}}{e^{ - \frac{{{r^2}}}{{\sigma _n^2}}}}\int\limits_{k \ge 0} {{e^{ - \frac{{{k^2}}}{{\sigma _n^2}}}}{I_0}\left( {\frac{{2rk}}{{\sigma _n^2}}} \right){p_{\left| s \right|}}\left( k \right)dk} \\ =& \frac{1}{{\pi \sigma _n^2}}{e^{ - \frac{{{r^2}}}{{\sigma _n^2}}}}{E_{_{\left| s \right|}}}\left\{ {{e^{ - \frac{{{{\left| s \right|}^2}}}{{\sigma _n^2}}}}{I_0}\left( {\frac{{2r\left| s \right|}}{{\sigma _n^2}}} \right)} \right\}\\ =& \frac{1}{{\pi \sigma _n^2}}{e^{ - \frac{{{r^2}}}{{\sigma _n^2}}}}{E_{_{\left| s \right|}}}\left\{ {f\left( {\left| s \right|} \right)} \right\}\\ =&\frac{1}{{\pi \sigma _n^2}}{e^{ - \frac{{{r^2}}}{{\sigma _n^2}}}}{E_{\left| x \right|}}\left\{ {f\left( {G\left( {\left| x \right|} \right)} \right)} \right\} \\ =&\frac{1}{{\pi \sigma _n^2}}{e^{ - \frac{{{r^2}}}{{\sigma _n^2}}}}\int\limits_{k \ge 0} {{e^{ - \frac{{G{{\left( k \right)}^2}}}{{\sigma _n^2}}}}{I_0}\left( {\frac{{2rG\left( k \right)}}{{\sigma _n^2}}} \right){p_{\left| x \right|}}\left( k \right)dk}, \end{aligned} $$
(45)

where \(f\left( {\left| s \right|} \right)={e^{ - \frac{{{\left| s \right|^2}}}{{\sigma _n^2}}}}{I_0}\left( {\frac{{2r\left| s \right|}}{{\sigma _n^2}}} \right), \) and the PDF of \(\left|y\right|\) is given by

$$ p_{\left|y\right|}\left(r\right) = \frac{2r}{{\sigma_n^2}}{e^{-\frac{{{r^2}}}{{\sigma _n^2}}}}\int\limits_{k \ge 0} {{e^{-\frac{{G{{\left(k\right)}^2}}}{{\sigma_n^2}}}}{I_0}\left( {\frac{{2rG\left(k\right)}}{{\sigma _n^2}}} \right){p_{\left| x \right|}}\left( k \right)dk}. $$
(46)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iofedov, I., Gutman, I. & Wulich, D. Performance Analysis of Communication System with Nonlinear Power Amplifier. Int J Wireless Inf Networks 20, 204–214 (2013). https://doi.org/10.1007/s10776-013-0205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-013-0205-9

Keywords

Navigation