Skip to main content
Log in

Multi-Party Quantum Key Agreement with Four-Qubit Cluster States Immune to Collusive Attack

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Collusion attack is a complex cryptanalysis method that can effectively attack quantum key agreement protocol, where some dishonest participants can conspire to steal the final key or the private key of other participants during the implementation of the protocol. Based on the analysis of the four-particle cluster quantum entangled state, a novel multiparty quantum key agreement protocol is proposed to address the above issues, which can effectively resist collusion attacks. By utilizing a novel particle transfer structure, namely the bidirectional travel structure, the protocol achieves secure key negotiation with the help of a semi-honest third party by using additional particles. In the key negotiation process, all participants’ contributions to the key are equal. During the protocol execution process, each participant only needs to perform simple unitary operations, single particle measurements, and Bell state measurements, making the protocol more practical. Analysis shows that this protocol has the characteristics of simple operation and security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data and materials will be made available on request.

References

  1. Cryptography, B.C.B.G.Q.: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Allati, A.E., Baz, M.E., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10, 589–602 (2011)

    Article  MathSciNet  Google Scholar 

  3. Xu, F., Ma, X., Zhang, Q., Lo, H.-K., Pan, J.-W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Mehic, M., Niemiec, M., Rass, S., Ma, J., Peev, M., Aguado, A., Martin, V., Schauer, S., Poppe, A., Pacher, C., et al.: Quantum key distribution: a networking perspective. ACM Comput. Surv. (CSUR) 53(5), 1–41 (2020)

    Article  Google Scholar 

  5. Cabello, A.: Quantum key distribution in the holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Zhang, Z.-j, Li, Y., Man, Z.-x: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. Tan, X., Jiang, L.: Improved three-party quantum secret sharing based on bell states. Int. J. Theor. Phys. 52(10), 3577–3585 (2013)

    Article  Google Scholar 

  8. Senthoor, K., Sarvepalli, P.K.: Communication efficient quantum secret sharing. Phys. Rev. A 100(5), 052313 (2019)

    Article  ADS  CAS  Google Scholar 

  9. Sheng, Y.-B., Zhou, L., Long, G.-L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367–374 (2022)

    Article  Google Scholar 

  10. Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using epr pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MathSciNet  Google Scholar 

  11. Zhang, W.-W., Li, D., Song, T.-T., Li, Y.-B.: Quantum private comparison based on quantum search algorithm. Int. J. Theor. Phys. 52, 1466–1473 (2013)

    Article  MathSciNet  Google Scholar 

  12. Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practical post-quantum signature schemes from isomorphism problems of trilinear forms, 582–612 (2022). Springer

  13. Gao, F., Qin, S.-J., Guo, F.-Z., Wen, Q.-Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  14. Li, Q., Chan, W.H., Long, D.-Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ikeda, K.: Quantum contracts between schrödinger and a cat. Quantum Inf. Process. 20(9), 313 (2021)

    Article  ADS  Google Scholar 

  16. Liu, Z.-F., Yang, R.-J., Cai, X.-Q., Wang, T.-Y.: Multiparty quantum contract signing. Front. Phys. 11, 355 (2023)

    Article  Google Scholar 

  17. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1 (2004)

    Article  CAS  Google Scholar 

  18. Chong, S.-K., Hwang, T.: Quantum key agreement protocol based on bb84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  CAS  Google Scholar 

  19. Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on “multiparty quantum key agreement with single particles’’. Quantum Inf. Process. 12, 3411–3420 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Wang, L., Ma, W.: Quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 16, 1–15 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Cai, B.-B., Guo, G.-D., Lin, S.: Multi-party quantum key agreement without entanglement. Int. J. Theor. Phys. 56, 1039–1051 (2017)

    Article  Google Scholar 

  22. Huang, W., Su, Q., Xu, B., Liu, B., Fan, F., Jia, H., Yang, Y.: Improved multiparty quantum key agreement in travelling mode. Sci. China: Phys. Mech. Astron 59, 1–10 (2016)

    CAS  Google Scholar 

  23. Yin, X.-R., Ma, W.-P., Liu, W.-Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)

    Article  MathSciNet  Google Scholar 

  24. Cai, B., Guo, G., Lin, S.: Multi-party quantum key agreement with teleportation. Mod. Phys. Lett. B 31(10), 1750102 (2017)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. Shi, R.-H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using bell states and bell measurement. Quantum Inf. Process. 13(11), 2391–2405 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. He, Y., Ma, W.: Two robust quantum key agreement protocols based on logical ghz states. Mod. Phys. Lett. B 31(03), 1750015 (2017)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Zeng, G.-J., Chen, K.-H., Chang, Z.-H., Yang, Y.-S., Chou, Y.-H.: Multiparty quantum key agreement based on quantum secret direct communication with ghz states (2016). arXiv:1602.00832

  29. Xu, T.-J., Gan, Z.-G., Ye, T.-Y.: Multiparty semiquantum key agreement with d-level single-particle states. Phys. A: Stat. Mech. Appl., 128991 (2023)

  30. Sun, Z., Yu, J., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. He, Y.-F., Ma, W.-P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Shen, D.-S., Ma, W.-P., Wang, L.-l: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313–2324 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. Sun, Z., Zhang, C., Wang, P., Yu, J., Zhang, Y., Long, D.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)

    Article  Google Scholar 

  34. Liu, H.-N., Liang, X.-Q., Jiang, D.-H., Xu, G.-B., Zheng, W.-M.: Multi-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 18, 1–10 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. Cao, H., Ma, W.: Multiparty quantum key agreement based on quantum search algorithm. Sci. Rep. 7(1), 45046 (2017)

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abulkasim, H., Alabdulkreem, E., Hamad, S.: Improved multi-party quantum key agreement with four-qubit cluster states. CMC-Comput. Mater. Contin. 73, 225–232 (2022)

    Google Scholar 

  37. Xu, T.-J., Chen, Y., Geng, M.-J., Ye, T.-Y.: Single-state multi-party semiquantum key agreement protocol based on multi-particle ghz entangled states. Quantum Inf. Process. 21(7), 266 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  38. Liu, B., Xiao, D., Jia, H.-Y., Liu, R.-Z.: Collusive attacks to “circle-type’’ multi-party quantum key agreement protocols. Quantum Inf. Process. 15, 2113–2124 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  39. Sun, Z., Cheng, R., Wu, C., Zhang, C.: New fair multiparty quantum key agreement secure against collusive attacks. Sci. Rep. 9(1), 17177 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Abulkasim, H., Mashatan, A., Ghose, S.: Secure multiparty quantum key agreement against collusive attacks. Sci. Rep. 11(1), 9456 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, H., Ma, W.: Multi-party traveling-mode quantum key agreement protocols immune to collusive attack. Quantum Inf. Process. 17, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  42. Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: A simple participant attack on the brádler-dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)

    MathSciNet  Google Scholar 

Download references

Funding

This research was funded by the major project of natural science research in colleges and universities of Anhui Province(NO.2022AH040235), National Natural Science Foundation of China(NO.62161025) and Anhui University of Science and Technology 2020 Stable Talent Project.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Mengqing Yang; Formal analysis, Mengqing Yang; Methodology, Mengqing Yang and Hao Cao; Software, Mengqing; Yang and Hao Cao; Supervision, Hao Cao and Zepeng Zhuo; Writing-original draft, Mengqing Yang; Writing-review and editing, Hao Cao and Zepeng Zhuo. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hao Cao or Zepeng Zhuo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Cao, H. & Zhuo, Z. Multi-Party Quantum Key Agreement with Four-Qubit Cluster States Immune to Collusive Attack. Int J Theor Phys 63, 50 (2024). https://doi.org/10.1007/s10773-024-05572-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05572-4

Keywords

Navigation