Skip to main content
Log in

Observables for the Effect of Gravity on Electromagnetic Polarization

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Does gravity affect the polarization of electromagnetic radiation in an observable way? The effect of gravity on the observed polarization of a ray of electromagnetic radiation is investigated for an arbitrary 4-dimensional spacetime and radiation with a frequency spectrum within the geometric optics limit and with arbitrary state of polarization. Focusing on effects observable by a single inertial observer, we show how the presence of curvature along the null geodesic of polarized electromagnetic radiation may induce observable changes in the state of polarization. We find a set of scalars that quantify the effect and derive their transport equations. Two of these scalars, the polarization degree and the circular polarization degree, are polarization state observables that are conserved along the radiation geodesic. Four observables that quantify time rate of change of the observed state of polarization are identified. One observable, the polarization axis rotation rate, measures angular motion of the polarization axis. The presence of curvature along the null geodesic of polarized electromagnetic radiation may induce rotation of the polarization axis of the radiation, as measured by an inertial observer. These observables quantify gravitational effects on electromagnetic polarization unambiguously. They are generally sensitive to gravity, which implies that polarized electromagnetic radiation can potentially be used to measure the gravitational fields it traverses. These observables and their corresponding transport equations provide a complete representation of how gravity affects the observed state of polarization of electromagnetic radiation with frequencies above the geometric optics limit. Polarization wiggling is sourced by curvature twist, which is a scalar derived from the Riemann tensor. Curvature twist is closely related to the magnetic part of the Weyl tensor, the second Weyl scalar as well as the rotation of the rest frame geodesic congruence. The results of this paper are valid for any metric theory of gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

No data were used or produced in this work.

References

  1. Schutz, B.F.: Gravitational-wave astronomy: delivering on the promises. Philosophical Trans. Royal Soc. A: Mathematical, Phys. Eng. Sci. 376, 20170279 (2018)

  2. Abbott, B.P., et al.: Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  3. Dehnen, H.: Gravitational Faraday-Effect. Int. J. Theoretical Phys. 7, 467 (1973)

    Article  ADS  Google Scholar 

  4. Faraoni, V.: The rotation of polarization by gravitational waves. New Astron. 13, 178 (2008)

    Article  ADS  Google Scholar 

  5. Dodelson, S., Schmidt, F.: Modern Cosmology, 2nd edn. Academic Press, San Diego (2020)

    Google Scholar 

  6. Allen, L., Beijersbergen, M.W., Spreeuw, R.J., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Tamburini, F., Thidè, B., Molina-Terriza, G., Anzolin, G.: Twisting of light around rotating black holes. Nature Phys. 7, 195 (2011)

    Article  ADS  CAS  Google Scholar 

  8. Tamburini, F., Thidè, B., Massimo, D.V.: Measurement of the spin of the M87 black hole from its observed twisted light. Monthly Notices Royal Astronom. Soc. 492, L22 (2020)

    Article  ADS  Google Scholar 

  9. Tamburini, F., Feleppa, F., Thidè, B.: Twisted light, a new tool for General Relativity and beyond. Int. J. Modern Phys. 3, 2142017 (2021)

    Article  Google Scholar 

  10. Bennett, C.L., et al.: Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl. 208, 20 (2013)

    Article  ADS  Google Scholar 

  11. Collaboration, P. et al.: Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astron. Astrophys. 641, A1 (2020)

  12. Morales, J.A., Sàez, D.: Evolution of polarization orientations in a flat universe with vector perturbations: CMB and quasistellar objects. Phys. Rev. D 75, 043011 (2007)

    Article  ADS  Google Scholar 

  13. Rytov, S.: Wave and geometrical optics. CR Acad. Sci. URSS 18, 263 (1937)

    Google Scholar 

  14. Skrotskii, G.V.: On the influence of gravity on the light propagation. Akademiia Nauk SSSR Doklady 114, 73 (1957)

    ADS  Google Scholar 

  15. Poisson, E., Will, C.M.: Gravity. Post-Newtonian, Relativistic (Cambridge University Press, Cambridge, Newtonian (2014)

    Book  Google Scholar 

  16. Mashhoon, B.: Gravitoelectromagnetism: A Brief review. Published as a chapter in The Measurement of Gravitomagnetism: A Challenging Enterprise, edited by L. Iorio (Nova Science, New York, 2007), pp 29–39 (2003)

  17. Carrol, S.: Spacetime and Geometry. Addison Wesley, San Fransisco (2004)

    Google Scholar 

  18. Mashhoon, B.: Scattering of Electromagnetic Radiation from a Black Hole. Phys. Rev. D 7, 2807 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  19. Perlick, V., Hasse, W.: Gravitational Faraday effect in conformally stationary spacetimes. Class. Quantum Grav. 10, 147 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  20. Balazs, N.L.: Effect of a Gravitational Field, Due to a Rotating Body, on the Plane of Polarization of an Electromagnetic Wave. Phys. Rev. 110, 236 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  21. Plebanski, J.: Electromagnetic Waves in Gravitational Fields. Phys. Rev. 118, 1396 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  22. Godfrey, B.B.: Mach’s Principle, the Kerr Metric, and Black-Hole Physics. Phys. Rev. D 1, 2721 (1970)

    Article  ADS  Google Scholar 

  23. Pineault, S., Roeder, R.C.: Applications of geometrical optics to the Kerr metric. I. Analytical results. Astrophys. J. 212, 541 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  24. Su, F.S., Mallett, R.L.: The effect of the Kerr metric on the plane of polarization of an electromagnetic wave. Astrophys. J. 238, 1111 (1980)

    Article  ADS  Google Scholar 

  25. Fayos, F., Llosa, J.: Gravitational effects on the polarization plane. General Relativ. Gravit. 14, 865 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  26. Ishihara, H., Takahashi, M., Tomimatsu, A.: Gravitational Faraday rotation induced by a Kerr black hole. Phys. Rev. D 38, 472 (1988)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. Gnedin, N.I., Dymnikova, I.G.: Rotation of the plane of polarization of a photon in space-time of the D type according to the Petrov classification. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 94, 26 (1988)

    ADS  Google Scholar 

  28. Kobzarev, I.I., Selivanov, K.G.: Rotation of the flight polarization vector in a nonstationary gravitational field. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 94, 1 (1988)

    ADS  Google Scholar 

  29. Kopeikin, S., Mashhoon, B.: Gravitomagnetic effects in the propagation of electromagnetic waves in variable gravitational fields of arbitrary-moving and spinning bodies. Phys. Rev. D 65, 064025 (2002)

    Article  ADS  Google Scholar 

  30. Nouri-Zonoz, M.: Gravitoelectromagnetic approach to the gravitational Faraday rotation in stationary spacetimes. Phys. Rev. D 60, 024013 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  31. Sereno, M.: Gravitational Faraday rotation in a weak gravitational field. Phys. Rev. D 69, 087501 (2004)

    Article  ADS  Google Scholar 

  32. Sereno, M.: Detecting gravitomagnetism with rotation of polarization by a gravitational lens. Mon. Not. R. Astron. Soc. 356, 381 (2005)

    Article  ADS  Google Scholar 

  33. Brodutch, A., Demarie, T.F., Terno, D.R.: Photon polarization and geometric phase in general relativity. Phys. Rev. D 84, 104043 (2011)

    Article  ADS  Google Scholar 

  34. Brodutch, A., Terno, D.R.: Polarization rotation, reference frames, and Mach’s principle. Phys. Rev. D 84, 121501 (2011)

    Article  ADS  Google Scholar 

  35. Montanari, E.: On the propagation of electromagnetic radiation in the field of a plane gravitational wave. Class. Quantum Gravit. 15, 2493 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  36. Ruggiero, M.L., Tartaglia, A.: Gravitational Faraday rotation in binary pulsar systems. Monthly Notices Royal Astronom. Soc. 374, 847 (2007)

    Article  ADS  Google Scholar 

  37. Newman, E., Penrose, R.: An Approach to Gravitational Radiation by a Method of Spin Coefficients. J. Math. Phys. 3, 566 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  38. Stephani, H., et al.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  39. Naruko, A., Pitrou, C., Koyama, K., Sasaki, M.: Second-order Boltzmann equation: gauge dependence and gauge invariance. Class. Quantum Gravit. 30, 165008 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  40. Pitrou, C.: Radiative transport of relativistic species in cosmology. Astroparticle Phys. 125, 102494 (2021)

    Article  Google Scholar 

  41. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, San Francisco (1973)

    Google Scholar 

  42. Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  43. Jackson, J.D.: Classical Electrodynamics, 2nd edn. John Wiley & Sons, New York (1975)

    Google Scholar 

  44. Poisson, E.: A Relativist’s Toolkit. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  45. Hervik, S., Ortaggio, M., Wylleman, L.: Minimal tensors and purely electric or magnetic spacetimes of arbitrary dimension. Class. Quant. Grav. 30, 165014 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  46. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  Google Scholar 

  47. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer, 2nd edn. Taylor & Francis, Philadelphia (1997)

    Google Scholar 

  48. Poplawski, N.J.: Classical Physics: Spacetime and Fields. arXiv:0911.0334 (2009)

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

All work for this paper was done by the author (K. Tangen).

Corresponding author

Correspondence to Kjell Tangen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A Miscellaneous Derivations

1.1.1 A.1 Transverse Covariant Derivative of the Screen Rotator

The covariant derivative of the Levi-Civita tensor vanishes [17, 48]:

$$\begin{aligned} \nabla _{\gamma }\epsilon _{\alpha \beta \mu \nu }=0 \end{aligned}$$

Given a null vector \(p^{\mu }\) with an expansion \(p^{\mu }=p( u^{\mu }+{\hat{p}}^{\mu }) \) in terms of a timelike unit vector \(u^{\mu }\) and a spacelike unit-vector \({\hat{p}}^{\mu }\), the transverse covariant derivative of the screen rotator \(\epsilon _{\mu \nu }\), as defined by (10), expands as follows:

$$\begin{aligned} \mathcal {D}_{\rho }\epsilon _{\mu \nu }=S_{\mu }^{\lambda }S_{\nu }^{\gamma }\epsilon _{\alpha \beta \lambda \gamma }\nabla _{\rho }u^{\alpha }{\hat{p}}^{\beta }+S_{\mu }^{\lambda }S_{\nu }^{\gamma }\epsilon _{\alpha \beta \lambda \gamma }u^{\alpha }\nabla _{\rho }{\hat{p}}^{\beta } \end{aligned}$$

Consider the first term, \(S_{\mu }^{\lambda }S_{\nu }^{\gamma }\epsilon _{\alpha \beta \lambda \gamma }\nabla _{\rho }u^{\alpha }{\hat{p}}^{\beta }\): \(S_{\mu }^{\lambda }S_{\nu }^{\gamma }\epsilon _{\alpha \beta \lambda \gamma }\nabla _{\rho }u^{\alpha }{\hat{p}}^{\beta }\ne 0\) if and only if \(u_{\alpha }\nabla _{\rho }u^{\alpha }\ne 0\). However,

$$\begin{aligned} u_{\alpha }\nabla _{\rho }u^{\alpha }=\frac{1}{2}\nabla _{\rho }\left( u_{\alpha }u^{\alpha }\right) =0 \end{aligned}$$

since \(u^{\alpha }\) is a unit vector. This implies that

$$\begin{aligned} S_{\mu }^{\lambda }S_{\nu }^{\gamma }\epsilon _{\alpha \beta \lambda \gamma }\nabla _{\rho }u^{\alpha }{\hat{p}}^{\beta }=0. \end{aligned}$$

By the same argument,

$$\begin{aligned} S_{\mu }^{\lambda }S_{\nu }^{\gamma }\epsilon _{\alpha \beta \lambda \gamma }u^{\alpha }\nabla _{\rho }{\hat{p}}^{\beta }=0. \end{aligned}$$

Therefore, the transverse covariant derivative of the screen rotator vanishes:

$$\begin{aligned} \mathcal {D}_{\rho }\epsilon _{\mu \nu }=0. \end{aligned}$$
(101)

1.1.2 A.2 The Commutator [pu]

Let us evaluate the commutator [pu] for a null vector \(p^{\mu }\) and a timelike unit vector \(u^{\mu }\). Its definition is

$$\begin{aligned} {\left[ p,u\right] }^{\beta }\equiv \nabla _{p}u^{\beta }-\nabla _{u}p^{\beta }. \end{aligned}$$
(102)

It can be decomposed into transverse and non-transverse terms by using the screen projector:

$$\begin{aligned} \nabla _{p}u^{\beta }-\nabla _{u}p^{\beta }=\mathcal {D}_{p}u^{\beta }-\mathcal {D}_{u}p^{\beta }-u^{\beta }u_{\gamma }\nabla _{p}u^{\gamma }+u^{\beta }u_{\gamma }\nabla _{u}p^{\gamma }+{\hat{p}}^{\beta }{\hat{p}}_{\gamma }\nabla _{p}u^{\gamma }-{\hat{p}}^{\beta }{\hat{p}}_{\gamma }\nabla _{u}p^{\gamma }. \end{aligned}$$

First, we find that the transverse terms vanish:

$$\begin{aligned} \mathcal {D}_{p}u^{\beta }&=S_{\alpha }^{\beta }\mathcal {D}_{p}u^{\alpha }=\mathcal {D}_{p}( S_{\alpha }^{\beta }u^{\alpha }) -u^{\alpha }\mathcal {D}_{p}S_{\alpha }^{\beta }=0\\ \mathcal {D}_{u}p^{\beta }&=S_{\alpha }^{\beta }\mathcal {D}_{u}p^{\alpha }=\mathcal {D}_{u}( S_{\alpha }^{\beta }p^{\alpha }) -p^{\alpha }\mathcal {D}_{u}S_{\alpha }^{\beta }=0. \end{aligned}$$

The remaining terms become

$$\begin{aligned} -u^{\beta }u_{\gamma }\nabla _{p}u^{\gamma }+u^{\beta }u_{\gamma }\nabla _{u}p^{\gamma }+{\hat{p}}^{\beta }{\hat{p}}_{\gamma }\nabla _{p}u^{\gamma }&-{\hat{p}}^{\beta }{\hat{p}}_{\gamma }\nabla _{u}p^{\gamma }\\ =&-\frac{p^{\beta }}{p}\nabla _{u}p+\left( \frac{p^{\beta }}{p}-u^{\beta }\right) {\hat{p}}_{\gamma }\nabla _{p}u^{\gamma }. \end{aligned}$$

Now,

$$\begin{aligned} {\hat{p}}_{\gamma }\nabla _{p}u^{\gamma }=-\frac{\nabla _{p}p}{p}, \end{aligned}$$

where \(p\equiv -u_{\alpha }p^{\alpha }\) is the scalar momentum of the null vector. Thus, we find that the commutator [pu] is

$$\begin{aligned} {\left[ p,u\right] }^{\beta }=-\frac{p^{\beta }}{p}\left( \nabla _{u}p+\frac{\nabla _{p}p}{p}\right) +u^{\beta }\frac{\nabla _{p}p}{p}. \end{aligned}$$
(103)

1.1.3 A.3 Curvature Twist

Using that

$$\begin{aligned} \epsilon ^{\lambda \mu }R_{\mu \alpha \beta \gamma }\epsilon ^{\alpha }=\epsilon ^{\lambda \mu }S_{\mu }^{\rho }S_{\alpha }^{\sigma }\epsilon ^{\alpha }R_{\rho \sigma \beta \gamma }=\frac{1}{2}\epsilon ^{\lambda \mu }( S_{\mu }^{\rho }S_{\alpha }^{\sigma }-S_{\mu }^{\sigma }S_{\alpha }^{\rho }) \epsilon ^{\alpha }R_{\rho \sigma \beta \gamma }, \end{aligned}$$

we get by the use of Proposition 2:

$$\begin{aligned} \epsilon _{\lambda }^{*} \epsilon ^{\lambda \mu }R_{\mu \alpha \beta \gamma }\epsilon ^{\alpha }=\frac{1}{2}\epsilon _{\lambda }^{*}\epsilon ^{\lambda \mu }\epsilon _{\mu \alpha }\epsilon ^{\rho \sigma }R_{\rho \sigma \beta \gamma }\epsilon ^{\alpha }=\frac{1}{2}\epsilon _{\lambda }^{*}( -S_{\alpha }^{\lambda }) \epsilon ^{\alpha }\epsilon ^{\rho \sigma }R_{\rho \sigma \beta \gamma }. \end{aligned}$$

Then, by using that \(\epsilon _{\lambda }^{*}S_{\alpha }^{\lambda }\epsilon ^{\alpha }=1\) and applying the decomposition of \(p^{\alpha }\) from (5), using the antisymmetry of the Riemann tensor in the two last indices, we obtain the following identity:

$$\begin{aligned} \epsilon _{\gamma }^{*}\epsilon ^{\gamma \mu }R_{\mu \lambda \alpha \beta }p^{\alpha }u^{\beta }\epsilon ^{\lambda }=-\frac{p}{2}\epsilon ^{\rho \sigma }R_{\rho \sigma \beta \gamma }{\hat{p}}^{\beta }u^{\gamma }. \end{aligned}$$
(104)

The Riemann tensor has several index symmetries. Among these are the antisymmetry of the first and last two indices

$$\begin{aligned} R_{\mu \alpha \beta \gamma }=R_{\left[ \mu \alpha \right] \beta \gamma }=R_{\mu \alpha [ \beta \gamma ] }, \end{aligned}$$
(105)

the switching relation

$$\begin{aligned} R_{\mu \alpha \beta \gamma }=R_{\beta \gamma \mu \alpha } \end{aligned}$$
(106)

and the permutation relation, which can be written

$$\begin{aligned} R_{\gamma \beta \rho \sigma }=-R_{\gamma \rho \sigma \beta }-R_{\gamma \sigma \beta \rho }=R_{\gamma \rho \beta \sigma }-R_{\gamma \sigma \beta \rho }. \end{aligned}$$
(107)

The right-hand side of (104) can be rewritten by using the antisymmetry of (105) and the switching relation of (106). Equation (104) then takes the form

$$\begin{aligned} \epsilon _{\gamma }^{*}\epsilon ^{\mu \gamma }R_{\mu \lambda \alpha \beta }p^{\alpha }u^{\beta }\epsilon ^{\lambda }=\frac{p}{2}u^{\gamma }{\hat{p}}^{\beta }\epsilon ^{\rho \sigma }R_{\gamma \beta \rho \sigma }. \end{aligned}$$
(108)

By using the permutation symmetry of (107), we obtain the following identity:

$$\begin{aligned} \epsilon _{\gamma }^{*}\epsilon ^{\mu \gamma }R_{\mu \lambda \alpha \beta }p^{\alpha }u^{\beta }\epsilon ^{\lambda }=p \mathcal {Z}, \end{aligned}$$
(109)

where

$$\begin{aligned} \mathcal {Z}\equiv u^{\gamma }{\hat{p}}^{\beta }\epsilon ^{\rho \sigma }R_{\gamma \rho \beta \sigma }=\frac{1}{2}u^{\gamma }{\hat{p}}^{\beta }\epsilon ^{\rho \sigma }R_{\gamma \beta \rho \sigma } \end{aligned}$$
(110)

is the curvature twist scalar.

1.1.4 A.4 Curvature Twist in Terms of the Weyl Tensor

\(\mathcal {Z}\) can be expressed in terms of the Weyl tensor by applying the relationship between the Weyl and Riemann tensors [17]:

$$ R_{\rho \sigma \mu \nu }=C_{\rho \sigma \mu \nu }+\left( g_{\rho [\mu }R_{\left. \nu \right] \sigma }-g_{\sigma [\mu }R_{\left. \nu \right] \rho }\right) -\frac{1}{3}g_{\rho [\mu }g_{\left. \nu \right] \sigma }R, $$

where R is the Ricci scalar. Let us first evaluate the right-hand side of (110) term by term. First,

$$\begin{aligned}&u^{\rho }{\hat{p}}^{\mu }\epsilon ^{\sigma \nu }( g_{\rho [\mu }R_{\left. \nu \right] \sigma }-g_{\sigma [\mu }R_{\left. \nu \right] \rho }) =\\&\qquad \quad \frac{1}{2}\left( u^{\rho }{\hat{p}}^{\mu }g_{\rho \mu }\epsilon ^{\sigma \nu }R_{\nu \sigma }-{\hat{p}}^{\mu }\epsilon ^{\sigma \nu }{u}_{\nu }R_{\mu \sigma }-u^{\rho }\epsilon ^{\sigma \nu }{\hat{p}}_{\sigma }R_{\nu \rho }+u^{\rho }{\hat{p}}^{\mu }\epsilon ^{\sigma \nu }g_{\sigma \nu }R_{\mu \rho }\right) . \end{aligned}$$

All terms on the right-hand side vanish because of the antisymmetry and transversality of the screen rotator, \(\epsilon ^{\sigma \nu }\). Next,

$$\begin{aligned} u^{\rho }{\hat{p}}^{\mu }\epsilon ^{\sigma \nu }\frac{1}{3}g_{\rho [\mu }g_{\left. \nu \right] \sigma }R=\frac{R}{6}\left( u^{\rho }{\hat{p}}^{\mu }g_{\rho \mu }\epsilon ^{\sigma \nu }g_{\nu \sigma }-u^{\rho }{\hat{p}}_{\sigma }\epsilon ^{\sigma \nu }g_{\rho \nu }\right) . \end{aligned}$$

Also here, the terms on the right-hand side vanish due to the antisymmetry and transversality of the screen rotator, \(\epsilon ^{\sigma \nu }\). Thus, curvature twist can be expressed in terms of the Weyl scalar as follows:

$$\begin{aligned} \mathcal {Z}\equiv u^{\rho }{\hat{p}}^{\mu }\epsilon ^{\sigma \nu }R_{\rho \sigma \mu \nu }=u^{\rho }{\hat{p}}^{\mu }\epsilon ^{\sigma \nu }C_{\rho \sigma \mu \nu }. \end{aligned}$$
(111)

It is then straight forward to prove the alternative expression

$$\begin{aligned} \mathcal {Z}=\frac{1}{2}u^{\gamma }{\hat{p}}^{\beta }\epsilon ^{\rho \sigma }R_{\gamma \beta \rho \sigma }=\frac{1}{2}u^{\gamma }{\hat{p}}^{\beta }\epsilon ^{\rho \sigma }C_{\gamma \beta \rho \sigma }. \end{aligned}$$
(112)

1.2 B Representing the State of Polarization of Electromagnetic Radiation

An arbitrary state of polarization can be defined in terms of the four Stokes parameters. We will now review the polarization representations applied in this paper. It uses the nomenclature and definitions of Section 2 above.

1.2.1 B.1 The Polarization Matrix

The polarization state of a classical field of electromagnetic radiation is completely characterized by the four Stokes parameters [42, 43]. They are measurable quantities that can be expressed in terms of the electric field vector and its projections against two mutually orthogonal unit vectors that both are transverse to the direction of propagation of the radiation, \(\hat{p}\). Let \(e_{A}^{\mu }, A=1,2\) denote the two transverse unit vectors, the polarization basis. They form a basis for any transverse field. Since the electric field vector \(E^{\mu }\) is transverse to the direction of propagation, it can be defined by its projection onto this basis: \(E_{A}\equiv e_{A}^{\mu }E_{\mu }\). We can then define the coherency matrix \(I_{\textrm{AB}}\) in terms of \(E_{A}\) as the expectation value

$$\begin{aligned} I_{\textrm{AB}}\equiv \left\langle E_{A}E_{B}^{*}\right\rangle \end{aligned}$$
(113)

evaluated as a time average over a large number of radiation cylces [42]. We notice that the use of a complex representation of the electric field in (113) is permissible as long as the average is taken over a large number of radiaton cycles, see Born and Wolf for details [42].    \(I_{\textrm{AB}}\) is a \(2\times 2\) Hermitian matrix. Written in matrix form, it can be expressed in terms of the four Stokes parameters IQUV as

$$\begin{aligned} I_{\textrm{AB}}=\frac{1}{2}{\left( \begin{array}{cc} I+Q &{} U-i V \\ U+i V &{} I-Q \end{array}\right) }_{\textrm{AB}}. \end{aligned}$$

We define the polarization matrix \(P_{\textrm{AB}}\) as the traceless part of the relative coherency matrix \(i_{\textrm{AB}}\equiv I_{\textrm{AB}}/I\). Written in terms of the relative Stokes parameters \(\mathcal {Q}\equiv Q/I\), \(\mathcal {U}\equiv U/I\) and \(\mathcal {V}\equiv V/I\), it takes the form

$$\begin{aligned} P_{\textrm{AB}}\equiv i_{\textrm{AB}}-\frac{1}{2}\delta _{\textrm{AB}}=\frac{1}{2}{\left( \begin{array}{cc} \mathcal {Q} &{} \mathcal {U}-i \mathcal {V} \\ \mathcal {U}+i \mathcal {V} &{} -\mathcal {Q} \end{array}\right) }_{\textrm{AB}}. \end{aligned}$$
(114)

The polarization degree \(\mathcal {P}\equiv \sqrt{\mathcal {Q}^{2}+\mathcal {U}^{2}+\mathcal {V}^{2}}\) can be expressed in terms of the polarization matrix as

$$\begin{aligned} \mathcal {P}^{2}=2P^{\textrm{BA}}P_{\textrm{AB}}=2P^{\textrm{AB}}P_{\textrm{AB}}^{*}. \end{aligned}$$
(115)

1.2.2 B.2 The Coherency and Polarization Tensors

Define the coherency tensor for an electromagnetic field, similar to the definition of the coherency matrix of (113):

$$\begin{aligned} I_{\mu \nu }\equiv \left\langle E_{\mu }E_{\nu }^{*}\right\rangle . \end{aligned}$$
(116)

The expectation value \(\langle E_{\mu }E_{\nu }^{*}\rangle \) of (116) is assumed to be a time average over a large number of radiation cycles. The intensity I is the scalar

$$\begin{aligned} I\equiv g^{\mu \nu }I_{\mu \nu }=S^{\mu \nu }I_{\mu \nu }. \end{aligned}$$

We retain the coherency matrix \(I_{\textrm{AB}}\) of (113) by projecting \(I_{\mu \nu }\) with the polarization basis \(e_{A}^{\mu }\):

$$\begin{aligned} I_{\textrm{AB}}=e_{A}^{\mu }e_{B}^{\nu }I_{\mu \nu }. \end{aligned}$$

In the geometric optics limit, the amplitude \(\mathcal {E}^{\mu }\equiv i a p \epsilon ^{\mu }\) of a plane electromagnetic wave can be assumed constant over a cycle. This implies that the Stokes parameters, expressed in terms of time-averaged squares of the electric field, \(\langle E_{A}E_{B}^{*}\rangle \) are additive when adding up contributions from multiple wave components. Therefore, the Stokes parameters of an electromagnetic field expressed as a composition of plane waves can be computed by summing up the Stokes parameters of each component [42]. This makes the Stokes parameters useful for characterizing any radiation field of arbitrary composition and arbitrary degree of polarization. Hence, the coherency tensor \(I_{\mu \nu }\) of (116) is a convenient covariant and gauge invariant field representation of any electromagnetic radiation field.

Define the relative coherency tensor \(i_{\mu \nu }\) as

$$\begin{aligned} i_{\mu \nu }\equiv \frac{I_{\mu \nu }}{I}. \end{aligned}$$

For a single plane wave with polarization vector \(\epsilon ^{\mu }\), the relative coherency tensor is

$$\begin{aligned} i_{\mu \nu }^{\textrm{pw}}( \epsilon ) =\epsilon _{\mu }\epsilon _{\nu }^{*}. \end{aligned}$$

Following the definition of the polarization matrix in (114), the polarization tensor \(P_{\mu \nu }\) is defined as

$$\begin{aligned} P_{\mu \nu }=i_{\mu \nu }-\frac{1}{2}S_{\mu \nu }. \end{aligned}$$
(117)

The polarization degree \(\mathcal {P}\) can be expressed in terms of the polarization tensor as

$$\begin{aligned} \mathcal {P}^{2}=2P^{\nu \mu }P_{\mu \nu }=2P^{\mu \nu }P_{\mu \nu }^{*}. \end{aligned}$$
(118)

1.2.3 B.3 Stokes Parameters

From (114), the polarization matrix \(P_{\textrm{AB}}\) can be expanded in terms of the Pauli matrices \(\sigma _{a},a=1,2,3\). The polarization matrix then expands as

$$\begin{aligned} P_{\textrm{AB}}=\frac{1}{2}\mathcal {S}_{a}\sigma _{\textrm{AB}}^{a}, \end{aligned}$$

where the relative Stokes parameters are \(\mathcal {S}_{1}=\mathcal {U}, \mathcal {S}_{2}=\mathcal {V},\mathcal {S}_{3}=\mathcal {Q}\). Conversely, the relative Stokes parameters can be found by contracting the polarization matrix with the Pauli matrices:

$$\begin{aligned} \mathcal {S}_{a}=\sigma _{a}^{\textrm{AB}}P_{\textrm{AB}}. \end{aligned}$$

Then, by selecting a transverse polarization basis \(e_{\mu }^{A}, A=1,2\), we can define a Pauli tensor basis

$$\begin{aligned} \sigma _{\mu \nu }^{a}=\sigma _{\textrm{AB}}^{a}e_{\mu }^{A}e_{\nu }^{B}. \end{aligned}$$

Based on the relationship between Pauli matrices, this basis satisfies

$$\begin{aligned} {\left( \sigma ^{a}\sigma ^{b}\right) }_{\mu \nu }=\delta ^{\textrm{ab}}S_{\mu \nu }+i \varepsilon ^{\textrm{abc}}\sigma _{\mu \nu }^{c}. \end{aligned}$$

This allows us to expand the polarization tensor in the Pauli tensor basis as

$$\begin{aligned} P_{\mu \nu }=\frac{1}{2}\mathcal {S}_{a}\sigma _{\mu \nu }^{a}, \end{aligned}$$

Conversely, the relative Stokes parameters can be found by contracting the polarization tensor with the Pauli tensors:

$$\begin{aligned} \mathcal {S}_{a}=\sigma _{a}^{\mu \nu }P_{\mu \nu }. \end{aligned}$$

Let \(s^{q}, q=Q,U\), denote the two symmetric Pauli matrices, with \(s^{Q}\equiv \sigma ^{3}\) and \(s^{U}\equiv \sigma ^{1}\). Defining \(\varepsilon ^{\textrm{QU}}=-\varepsilon ^{\textrm{UQ}}=\varepsilon ^{312}=1\), the relationship between the two symmetric Pauli matrices can be written

$$\begin{aligned} {\left( s^{p}s^{q}\right) }_{\mu \nu }=\delta ^{\textrm{pq}}S_{\mu \nu }+ \varepsilon ^{\textrm{pq}}\epsilon _{\mu \nu }, \end{aligned}$$

and the antisymmetric Pauli matrix \(\sigma ^{2}\) can be expressed as

$$ \sigma _{\mu \nu }^{2}=-i \epsilon _{\mu \nu }. $$

The polarization tensor then takes a form that separates the symmetric and antisymmetric parts:

$$\begin{aligned} P_{\mu \nu }=-\frac{i}{2} \mathcal {V} \epsilon _{\mu \nu }+\frac{1}{2}S_{q}s_{\mu \nu }^{q}, q=Q,U. \end{aligned}$$
(119)

Equation (119) can be inverted to obtain the circular polarization degree in terms of the polarization tensor:

$$\begin{aligned} \mathcal {V}=i \epsilon ^{\mu \nu }P_{\mu \nu }. \end{aligned}$$
(120)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tangen, K. Observables for the Effect of Gravity on Electromagnetic Polarization. Int J Theor Phys 63, 30 (2024). https://doi.org/10.1007/s10773-024-05556-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05556-4

Keywords

Navigation