Skip to main content
Log in

Uncertainty Relation of Quantum Coherence Measure Based on Hellinger Distance

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we focus on the uncertainty relations based on the quantum coherence measure of Hellinger distance. First, we discuss two kinds of quantum uncertainty relations for single qubit state based on two orthogonal bases. The lower bound of the coherence sum under two sets of orthogonal bases is related to the overlap of the two sets of bases and the mixedness of single-qubit state. We find that the lower bound \(B_1\) decrease with the growing of the mixedness, and increase with the growing of the overlap of the two sets of bases. Second, we consider uncertainty relation in a subsystem for a two-qubit quantum state. The result shows that the lower bound increases with the growing of entanglement. In addition, we find that the sum of coherence measure will be affected by the existence of entanglement by numerical analysis. Finally, the uncertainty relations of d-dimensional quantum systems are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Heisenberg, W.: Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik. Physik Z. 43(3–4), 172–198 (1927)

    Article  Google Scholar 

  2. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34(1), 163 (1929)

    Article  ADS  Google Scholar 

  3. Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50(9), 631 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  4. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D. 35(10), 3070 (1987)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60(12), 1103 (1988)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  6. Puchała, Z., Rudnicki, Ł., Życzkowski, K.: Majorization entropic uncertainty relations. J. Phys. A: Math. Theor. 46(27), 272002 (2013)

  7. Rudnicki, P.Z.Ł., Życzkowski, K.: Strong majorization entropic uncertainty relations. Phys. Rev. A. 89(5), 052115 (2014)

  8. Kurzyk, D., Pawela, Ł., Puchała, Z.: Conditional entropic uncertainty relations for tsallis entropies. Quantum Inf. Process. 17, 1–12 (2018)

  9. Ren, R., Li, P., Ye, M., Li, Y.: Tighter sum uncertainty relations based on metric-adjusted skew information. Phys. Rev. A. 104(5), 052414 (2021)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Wehner, S., Winter, A.: Entropic uncertainty relations-a survey. New J. Phys. 12(2), 025009 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. Coles, P.J., Berta, M., Wehner, S., Tomamichel, M.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89(1), 015002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Koashi, M.: Simple security proof of quantum key distribution via uncertainty principl. arXiv preprint quant-ph/0505108. (2005)

  13. Damgard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. SIAM J. Comput. 37(6), 1865–1890 (2008)

    Article  MathSciNet  Google Scholar 

  14. Hu, M.L., Fan, H.: Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs. Phys. Rev. A. 86(3), 032338 (2012)

    Article  ADS  Google Scholar 

  15. Scully, M.O., Zubairy, M.S.: Quantum Optics. Can- brudge University Press, Cambridge (1997)

  16. Wu, C., Jha, P.K., Mrejen, M., Kim, J., Wang, Y., Rostovtsev, Y.V., Zhang, X.: Coherence-driven topological transition in quantum metamaterials. Phys. Rev. Lett. 116(16), 165502 (2016)

  17. Kammerlander, P., Anders, J.: Coherence and measurement in quantum thermodynamics. Sci. Rep. 6(1), 22174 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science. 306(5700), 1330–1336 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Demkowicz-Dobrzański, R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113(25), 250801 (2014)

  20. Lloyd, S.: Quantum coherence in biological systems. Journal of Physics-Conference Series. 302(1), 012037 (2011)

    Article  Google Scholar 

  21. Li, C.M., Lambert, N., Chen, Y.N., Nori, F., Chen, G.Y.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2(1), 885 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6(1), 7689 (2015)

    Article  ADS  PubMed  Google Scholar 

  23. Lostaglio, M., Korzekwa, K., Jennings, D., Lostaglio, M.: Quantum coherence, timetranslation symmetry and thermodynamics. Phys. Rev. X. 5(2), 021001 (2015)

  24. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89(4), 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

  26. Dhar, H.S., Adesso, G., Streltsov, A., Bera, M.N., Singh, U.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403 (2015)

    Article  MathSciNet  PubMed  Google Scholar 

  27. Zhou, Y., Zhao, Q., Yuan, X., Ma, X.: Polynomial measure of coherence. New J. Phys. 19(12), 123033 (2017)

  28. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116(15), 150502 (2016)

  29. Rastegin, A.E.: Quantum-coherence quantifiers based on the tsallis relative entropies. Phys. Rev. A. 93(3), 032136 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Shao, L.H., Xi, Z.J., Fan, H., Li, Y.M.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A. 91(4), 042120 (2015)

    Article  ADS  Google Scholar 

  31. Yu, C.: Quantum coherence via skew information and its polygamy. Phys. Rev. A. 95(4), 042337 (2017)

    Article  ADS  Google Scholar 

  32. Yu, D., Yu, C.: Quantifying coherence in terms of fisher information. Phys. Rev. A. 106(5), 052432 (2022)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  33. Jin, Z.X., Fei, S.M.: Quantifying quantum coherence and nonclassical correlation based on hellinger distance. Phys. Rev. A. 97(6), 062342 (2018)

    Article  ADS  CAS  Google Scholar 

  34. Yuan, X., Bai, G., Peng, T.Y., Ma, X.F.: Quantum uncertainty relation using coherence. Phys. Rev. A. 96(3), 032313 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. Singh, U., Pati, A.K., Bera, M.N.: Uncertainty relations for quantum coherence. Mathematics. 4(3), 47 (2016)

    Google Scholar 

  36. Sun, Y., Luo, S.L.: Coherence as uncertainty. Phys. Rev. A. 103(4), 042423 (2021)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  37. Luo, S.L., Sun, Y.: Uncertainty relations for coherence. Commun. Theor. Phys. 71(12), 1443 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  38. Lv, W.M., Zhang, C., Hu, X.M., Cao, H., Wang, J., Huang, Y.F., Liu, B.H., Li, C.F., Guo, G.C.: Experimental test of the trade-off relation for quantum coherence. Phys. Rev. A. 98(6), 042423 (2018)

    Article  Google Scholar 

  39. Zhang, F.G., Li, Y.M.: Quantum uncertainty relations of two generalized quantum relative entropies of coherence. Sci. China: Phys., Mech. Astron. 61, 1–9 (2018)

  40. Mu, H., Li, Y.: Quantum uncertainty relations of two quantum relative entropies of coherence. Phys. Rev. A. 102(2), 022217 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  41. Wang, Y.K., Ge, L.Z., Tao, Y.H.: Quantum coherence in mutually unbiased bases. Quantum Inf. Process. 18(6), 164 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  42. Rastegin, A.E.: Uncertainty relations for quantum coherence with respect to mutually unbiased bases. Front. Phys. 13, 1–7 (2018)

    Article  Google Scholar 

  43. Rastegin, A.E.: Uncertainty relations for coherence quantifiers based on the tsallis relative 1/2-entropies. Phys. Scripta. 98(1), 015107 (2022)

    Article  ADS  Google Scholar 

  44. Ding, Z.Y., Yang, H., Wang, D., Yuan, H., Yang, J., Ye, L.: Experimental investigation of entropic uncertainty relations and coherence uncertainty relations. Phys. Rev. A. 101(3), 032101 (2020)

  45. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A. 57(3), 1619 (1998)

    Article  ADS  CAS  Google Scholar 

  46. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press Cambridge, Britain (2002)

    Google Scholar 

  47. Peters, N.A., Wei, T.C., Kwiat, P.G.: Mixed-state sensitivity of several quantum-information benchmarks. Phys. Rev. A. 70(5), 052309 (2004)

    Article  ADS  Google Scholar 

  48. Zhang, F.G., Li, Y.M.: Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel. Chin. Phys. B. 27(9), 090301 (2018)

    Article  ADS  Google Scholar 

  49. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities Theory of Majorization and Its Applications. Springer, Berlin (1979)

    Google Scholar 

Download references

Acknowledgements

This paper is supported by Startup Foundation for Doctors of Nanchang Hangkong University( No.EA201907210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fugang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 1

Proof

By the Lemma 1. in Ref. [48], we can know that there is a value \(\omega \) such that \(|\langle x_{0}|\varphi \rangle |^{2}=\sin ^{2}(\theta +\omega )\). For convenience, replacing \(\theta +\omega \) by \(\theta '\), we obtain \(|\langle x_{0}|\varphi \rangle |^{2}=\sin ^{2}(\theta ')\), \(|\langle x_{0}|\varphi _{\perp }\rangle |^{2}=|\langle x_{1}|\varphi \rangle |^{2}=\cos ^{2}(\theta ')\) and \(|\langle x_{1}|\varphi _{\perp }\rangle |^{2}=\sin ^{2}(\theta ')\). We have \(\langle {x_0}\sqrt{\rho }|{x_0}\rangle = \sqrt{p}\sin ^2(\theta ')+\sqrt{1-p}\cos ^2(\theta ')\) and \(\langle {x_1}|\sqrt{\rho }|{x_1}\rangle = \sqrt{p}\cos ^2(\theta ')+\sqrt{1-p}\sin ^2(\theta ')\), then

$$\begin{aligned}{} & {} \sum _{i}\langle {x_i}|\sqrt{\rho }|{x_i}\rangle ^2\nonumber \\{} & {} =\langle {x_0}|\sqrt{\rho }|{x_0}\rangle ^{2}+\langle {x_1}|\sqrt{\rho }|{x_1}\rangle ^{2}\nonumber \\{} & {} =[\sqrt{p}\sin ^2(\theta ')+\sqrt{1-p}\cos ^2(\theta ')]^2+[\sqrt{p}\cos ^2(\theta ')+\sqrt{1-p}\sin ^2(\theta ')]^2\nonumber \\{} & {} =1-\frac{1-2\sqrt{p(1-p)}}{2}\sin ^{2}(2\theta '). \end{aligned}$$
(22)

Replacing \(\theta '\) by \(\theta '+\varepsilon \), we can obtain \(\sum _{j}\langle {y_j}|\sqrt{\rho }|{y_j}\rangle ^2=1-\frac{1-2\sqrt{p(1-p)}}{2}\sin ^{2}(2\theta '+2\varepsilon )\). Since \(\sqrt{x}+\sqrt{y}\le \sqrt{2(x+y)}\),then

$$\begin{aligned} \begin{aligned}&\sqrt{\sum _{i}\langle {x_i}|\sqrt{\rho }|{x_i}\rangle ^2}+\sqrt{\sum _{j}^{}\langle {y_j}|\sqrt{\rho }|{y_j}\rangle ^2}\\&\le \sqrt{2(\sum _{i}\langle {x_i}|\sqrt{\rho }|{x_i}\rangle ^2+\sum _{j}\langle {y_j}|\sqrt{\rho }|{y_j}\rangle ^2)}\\&=\sqrt{4-[1-2\sqrt{p(1-p)}][\sin ^2(2\theta ')+\cos ^2(2\theta '+2\varepsilon )]}. \end{aligned} \end{aligned}$$
(23)

It has been proved in (11) of Ref. [48] that \(\sin ^{2}(2\theta ')+\sin ^{2}(2\theta '+2\varepsilon )\) have the minimum value \(2(1-c)\). Therefore, we have

$$\begin{aligned} C_H^{X}(\rho )+C_H^{Y}(\rho )= & {} 2\left( 1-\sqrt{\sum _{i}\langle {x_i}|\sqrt{\rho }|{x_i}\rangle ^2}\right) +2\left( 1-\sqrt{\sum _{j}\langle {y_j}|\sqrt{\rho }|{y_j}\rangle ^2}\right) \nonumber \\= & {} 4-2\left( \sqrt{\sum _{i}\langle {x_i}|\sqrt{\rho }|{x_i}\rangle ^2}+\sqrt{\sum _{j}\langle {y_j}|\sqrt{\rho }|{y_j}\rangle ^2}\right) \nonumber \\\ge & {} 4-2\sqrt{4-[1-2\sqrt{p(1-p)}][\sin ^2(2\theta ')+\cos ^2(2\theta '+2\varepsilon )]}\nonumber \\\ge & {} 4-2\sqrt{4-2[1-2\sqrt{p(1-p)}](1-c)}=B_1. \end{aligned}$$
(24)

It is easy to see that the first inequality becomes equality if and only if \(\sin ^2(2\theta ')=\sin ^2(2\theta '+2\varepsilon )\), namely, \(\theta '=\frac{\pi }{4}-\frac{\varepsilon }{2}\) or \(\theta '=\frac{\pi }{2}-\frac{\varepsilon }{2}\). If \(\varepsilon \le \frac{\pi }{4}\), the second inequality becomes equality when \(\theta '=\frac{\pi }{2}-\frac{\varepsilon }{2}\); if \(\varepsilon \ge \frac{\pi }{4}\), \(\sin ^2(2\theta ')+\cos ^2(2\theta '+2\varepsilon )\) achieves a unique minimum value \(2(1-c)\), when \(\theta '=\frac{\pi }{4}-\frac{\varepsilon }{2}\). In summary, the inequality (11) becomes equality \(\theta '=\frac{\pi }{2}-\frac{\varepsilon }{2}\) when \(\varepsilon \le \frac{\pi }{4}\), or \(\theta '=\frac{\pi }{4}-\frac{\varepsilon }{2}\) when \(\varepsilon \ge \frac{\pi }{4}\).\(\square \)

Appendix B: Proof of Theorem 2

Proof

Let \(p_{ij}=\langle {X_{ij}}|\sqrt{\rho _{AB}}|{X_{ij}}\rangle =\langle {X_{ij}}|{\psi _{AB}}\rangle \langle {\psi _{AB}}|{X_{ij}}\rangle =|\langle {X_{ij}}|{\psi _{AB}}\rangle |^2\). After calculation, we can get

$$\begin{aligned} {\begin{matrix} &{}p_{00}=|\langle {X_{00}}|{\psi _{AB}}\rangle |^2=|\sqrt{\lambda }\cos (\theta _1)\cos (\theta _2)+\sqrt{1-\lambda }\sin (\theta _1)\sin (\theta _2)|^2,\\ &{}p_{01}=|\langle {X_{01}}|{\psi _{AB}}\rangle |^2=|-\sqrt{\lambda }\cos (\theta _1)\sin (\theta _2)+\sqrt{1-\lambda }\sin (\theta _1)\cos (\theta _2)|^2,\\ &{}p_{10}=|\langle {X_{10}}|{\psi _{AB}}\rangle |^2=|-\sqrt{\lambda }\sin (\theta _1)\cos (\theta _2)+\sqrt{1-\lambda }\cos (\theta _1)\sin (\theta _2)|^2,\\ &{}p_{11}=|\langle {X_{11}}|{\psi _{AB}}\rangle |^2=|\sqrt{\lambda }\sin (\theta _1)\sin (\theta _2)+\sqrt{1-\lambda }\cos (\theta _1)\cos (\theta _2)|^2.\\ \end{matrix}} \end{aligned}$$
(25)

According to the properties of quantum states, we can get \(\sum _{ij}p_{ij}=1\). The quantum coherence measure of \(\psi _{AB}\) based on X can be written as

$$\begin{aligned} C_H^{X}(|{\psi _{AB}}\rangle )=2(1-\sqrt{\sum _{ij}p_{ij}^2}). \end{aligned}$$
(26)

Let \(f(\theta _1,\theta _2)=\sum _{ij}p_{ij}^2\). We have

$$\begin{aligned} (\sum _{ij}p_{ij})^2=\sum _{ij}p_{ij}^2+2p_{00}p_{01}+2p_{10}p_{11}+2(p_{00}+p_{01})(p_{10}+p_{11})=1. \end{aligned}$$
(27)

Due to \(x^2+y^2\ge \frac{(x+y)^2}{2}\),we can obtain \(2p_{00}p_{01}+2p_{10}p_{11}\ge (\sqrt{p_{00}p_{01}}+\sqrt{p_{10}p_{11}})^2\ge (1-2\lambda )^2\sin ^2(\theta _2)\cos ^2(\theta _2)\). Then

$$\begin{aligned} \sum _{ij}p_{ij}^2+(\sqrt{p_{00}p_{01}}+\sqrt{p_{10}p_{11}})^2+2(p_{00}+p_{01})(p_{10}+p_{11})\le 1. \end{aligned}$$
(28)

Through calculation, we can directly obtain

$$\begin{aligned} \begin{aligned}&f(\theta _1,\theta _2)=\sum _{ij}p_{ij}^2\\&\le 1-(\sqrt{p_{00}p_{01}}+\sqrt{p_{10}p_{11}})^2-2(p_{00}+p_{01})(p_{10}+p_{11})\\&\le 1-(1-2\lambda )^2\sin ^2(\theta _2)\cos ^2(\theta _2)-2\lambda (1-\lambda )-2(1-2\lambda )^2\sin ^2(\theta _1)\cos ^2(\theta _1). \end{aligned} \end{aligned}$$
(29)

We replace \(\theta _1\) by \(\theta _1+\varepsilon \) and obtain

$$\begin{aligned} \begin{aligned} f(\theta _1+\varepsilon ,\theta _2)\le&1-(1-2\lambda )^2\sin ^2(\theta _2)\cos ^2(\theta _2)-\\&2\lambda (1-\lambda )-2(1-2\lambda )^2\sin ^2(\theta _1+\varepsilon )\cos ^2(\theta _1+\varepsilon ). \end{aligned} \end{aligned}$$
(30)

According to (29) and (30), we can obtain

$$\begin{aligned} \begin{aligned}&f(\theta _1,\theta _2)+f(\theta _1+\varepsilon ,\theta _2)\\&\le 2-4\lambda (1-\lambda )-2(1-2\lambda )^2\sin ^2(\theta _2)\cos ^2(\theta _2)-(1-2\lambda )^2(1-c)\\&=1+(1-2\lambda )^2[c-\frac{1}{2}\sin ^2(2\theta _2)]. \end{aligned} \end{aligned}$$
(31)

The second inequality comes from the proof of the Lemma 1. in Ref [48],i.e., \(\sin ^2(2\theta )+\sin ^2(2\theta +2\varepsilon )\ge 2(1-c)\). Due to \(\sqrt{x}+\sqrt{y}\le \sqrt{2(x+y)}\), we have

$$\begin{aligned} \begin{aligned} \sqrt{f(\theta _1,\theta _2)}+\sqrt{f(\theta _1+\varepsilon ,\theta _2)}&\le \sqrt{2(f(\theta _1,\theta _2)+f(\theta _1+\varepsilon ,\theta _2))}\\&\le \sqrt{2+[2c-\sin ^2(2\theta _2)](1-2\lambda )^2}. \end{aligned} \end{aligned}$$
(32)

According to the above discussion, one has

$$\begin{aligned} \begin{aligned} C_H^{X}(|{\psi _{AB}}\rangle )+C_H^{Y}(|{\psi _{AB}}\rangle )&=2[2-(\sqrt{f(\theta _1,\theta _2)}+\sqrt{f(\theta _1+\varepsilon ,\theta _2)})]\\&\ge 4-2\sqrt{2+[2c-\sin ^2(2\theta _2)](1-2\lambda )^2}=B_3. \end{aligned} \end{aligned}$$
(33)

\(\square \)

Appendix C: Proof of Theorem 3

A few lemmas are to be introduced before completing the proof of Theorem 3. Łukasz Rudnicki et al. [7] have has proved \(\textbf{p}\oplus \textbf{q}\prec 1\oplus \textbf{w}\).

Lemma 1

For probability vectors p and q defined in (18) the following majorization relation holds

$$\begin{aligned} (p_1,p_2,\dots ,p_d,q_1,q_2,\dots ,q_d)\prec (1,s_1,s_2-s_1,\cdots s_d-s_{d-1}). \end{aligned}$$
(34)

That the right hand side of the above relation concerns the vector \(\textbf{w}\) present in (17).

A real-valued function \(\phi \) defined on a set \(I\subset \mathbb {R}^n\) is said to be Schur-convex on I if \(x\prec y\) on I \(\Longrightarrow \phi (x)\le \phi (y)\). It has been proposed in the [49] that the determining theorem for Schur’s convex functions.

Lemma 2

Let real-valued function \(F(x_1\cdots x_n):\mathbb {R}^n\rightarrow \mathbb {R}\) be continuously differentiable. Necessary and sufficient conditions for F to be Schur-convex on \(\mathbb {R}^n\) are that F is symmetric on \(\mathbb {R}^n\), and for all \(i\ne j,\)

$$\begin{aligned} (x_i-x_j)(\frac{\partial F}{\partial x_i}-\frac{\partial F}{\partial x_j})\ge 0. \end{aligned}$$
(35)

Let us now prove Theorem 3.

Proof

We define the function \(f(\textbf{u})=\sum _{i}u_i^2\), where \(\textbf{u}=(u_1,\dots , u_d)\) is any d-dimensional vector. \(f(\textbf{u})\) can easily be determined to be symmetry and for any \(i,j\in \{1,2,\dots ,d\}\), we have:

$$(u_i-u_j)(\frac{\partial f}{\partial u_i}-\frac{\partial f}{\partial u_j})=(u_i-u_j)(2u_i-2u_j)\ge 0.$$

Hence, \(f(\textbf{u})\) is a Schur-convex function [49] and \(\textbf{p}\oplus \textbf{q}\prec 1\oplus \textbf{w}\) [6, 7]. We can obtain

$$\begin{aligned} r_X+r_Y=f(\textbf{p}\oplus \textbf{q})\le f(1\oplus \textbf{w})=r_w, \end{aligned}$$
(36)

where \(\textbf{p}\oplus \textbf{q}=(p_1,p_2,\dots ,p_d,q_1,q_2,\dots ,q_d)\) and \(1\oplus \textbf{w}=(1,s_1,s_2-s_1,\cdots s_d-s_{d-1}).\) So,

$$\begin{aligned} C_H^X(|{\psi }\rangle )+C_H^Y(|{\psi }\rangle )= & {} 2(2-\sqrt{r_X}-\sqrt{r_Y})\nonumber \\\ge & {} 2(2-\sqrt{2(r_X+r_Y)})\nonumber \\\ge & {} 2(2-\sqrt{2r_w})=B_{d_1}. \end{aligned}$$
(37)

The first inequality holds because \(\sqrt{x}+\sqrt{y}\le \sqrt{2(x+y)}\).\(\square \)

Appendix D: Proof of Theorem 4

Proof

Let \(p_k^i=|\langle {x_i}|{\psi _k}\rangle |^2,q_k^j=|\langle {y_j}|{\psi _k}\rangle |^2\). According to the convexity of \(x^2\) and Jensen’s inequality, we can obtain

$$\begin{aligned} {\begin{matrix} &{}r_X=\sum _{i}\left( \sum _{k}\lambda _k^{\frac{1}{2}}p_k^i\right) ^2\le \sum _{k}\lambda \lambda _k^{\frac{1}{2}}\sum _{i}(p_k^i)^2,\\ &{}r_Y=\sum _{j}\left( \sum _{k}\lambda _k^{\frac{1}{2}}q_k^j\right) ^2\le \sum _{k}\lambda \lambda _k^{\frac{1}{2}}\sum _{i}(q_k^j)^2,\\ &{}r_X+r_Y\le \sum _{k}\lambda \lambda _k^{\frac{1}{2}}\sum _{ij}[(p_k^i)^2+(q_k^j)^2]\le \lambda ^2r_w. \end{matrix}} \end{aligned}$$
(38)

Therefore

$$\begin{aligned} \begin{aligned} C_H^X(\rho )+C_H^Y(\rho )=&2(2-\sqrt{r_X}-\sqrt{r_Y})\\ \ge&2(2-\sqrt{2(r_X+r_Y)})\\ \ge&2(2-\sqrt{2\lambda ^2r_w})=B_{d_2}. \end{aligned} \end{aligned}$$
(39)

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, F. Uncertainty Relation of Quantum Coherence Measure Based on Hellinger Distance. Int J Theor Phys 63, 12 (2024). https://doi.org/10.1007/s10773-023-05537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05537-z

Keywords

Navigation