Skip to main content
Log in

Controlled and Assisted Cloning of an Arbitrary Unknown States via Maximal Slice States

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The purpose of this article is to further investigate the assisted cloning of an arbitrary unknown state via maximal slice states under the control of the supervisor. By making use of three-qubit maximal slice states and appropriate measurement basis, we propose efficient controlled schemes for cloning arbitrary unknown multi-qubit states with assistance from a state preparer. The first stage of schemes requires usual teleportation and proper measurement basis chosen by controller, and in the second stage the state preparer disentangles the left over entangled states by introducing auxiliary particles, implementing controlled NOT gates and two special projective measurements, and communicates some classical bits to the sender of the first stage, so that perfect copies are produced. Based on the implementation schemes for copying arbitrary unknown single- and two-qubit states, we have derived the controlled and assisted cloning protocols for arbitrary unknown multi-qubit states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Christian, K., Mario, P.: Applied Quantum Cryptography: Applied Quantum Cryptography. Science Press (2015). https://doi.org/10.1007/978-3-642-04831-9

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Am. Phys. Soc. 70(13), 1895–1899 (1993)

    MathSciNet  CAS  Google Scholar 

  3. Peng, J.-Y., He, Y.: Annular controlled teleportation. Int. J. Theor. Phys. 58(10), 3271–3281 (2019)

    Article  MathSciNet  Google Scholar 

  4. Zhou, P., Li, X.-H., Deng, F.-G., Zhou, H.Y.: Multiparty-controlled teleportation of anarbitrary \(m\)-qudit state with a pure entangled quantum channel. J. Phys. A: Math. Theor. 40, 13121–13130 (2007)

    Article  ADS  Google Scholar 

  5. Peng, J.-Y., Tang, L., Yang, Z., Wu, F., Mo, Z.-W., Bai, M.-Q.: Cyclic teleportation in noisy chanel with nondemolition parity analysis and weak measurement. Quantum Inf. Process. 21(3), 114 (2022). https://doi.org/10.1007/s11128-022-03461-5

    Article  ADS  Google Scholar 

  6. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012). https://doi.org/10.1103/PhysRevLett.108.130503

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Huang,W., Su, Q., Xu, B.J., Liu, B., Fan, F., Jia, H.Y., Yang, Y.H.: Improved multiparty quantum key agreement in travelling mode. Sci. China Phys. Mech. Astron 59(12) (2016). https://doi.org/10.1007/s11433-016-0322-3

  8. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001). https://doi.org/10.1103/PhysRevA.63.014302

    Article  ADS  Google Scholar 

  9. Peng, J.Y.: Remote preparation of general one-, two- and three-qubit states via \(\chi \)-type entangled states. Intern. J. Theor. Phys. 59, 3789–3803 (2020)

    Article  MathSciNet  Google Scholar 

  10. Gong, R., Wei, Y., Xue, S., Jiang, M.: Joint remote state preparation of an arbitrary multi-qudit state in a chain network. Quantum Inf. Process. 21(9), 1–16 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  11. Peng, J.Y., Bai, M.Q., Tang, L., Yang, Z., Mo, Z.W.: Perfect controlled joint remote state preparation of arbitrary multi-qubit states independent of entanglement degree of the quantum channel. Quantum Inf. Precess. 20, 1–18 (2021)

    MathSciNet  Google Scholar 

  12. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. Peng, J.Y., Mo, Z.W.: Quantum sharing an unknown multi-particle state via POVM. Int. Theor. Phys. 52(2), 620–633 (2013)

    Article  Google Scholar 

  14. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10, 53–61 (2011)

    Article  MathSciNet  Google Scholar 

  15. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Hierarchical and probabilistic quantum state sharing via a non-maximally entangled \(|\chi \rangle \) state. Chin. Phys. B 23, 010304 (2014). https://doi.org/10.1088/1674-1056/23/1/010304

    Article  ADS  Google Scholar 

  16. Lai, H., Pieprzyk, J., Luo, M.-X., Zhan, C., Pan, L., Orgun, M.A.: High-capacity (2, 3) threshold quantum secret sharing based on asymmetric quantum lossy channels. Quantum Inf. Process. 19(5), 157 (2020). https://doi.org/10.1007/s11128-020-02647-z

    Article  ADS  MathSciNet  Google Scholar 

  17. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional quantum states sharing. Int. J. Theor. Phys. 55, 2481–2489 (2016)

    Article  MathSciNet  Google Scholar 

  18. Pati, A.K.: “Assisted cloning’’ and “orthogonal-complementing’’ of an unknown state. Phys. Rev. A 61(2), 022308 (2000). https://doi.org/10.1103/PhysRevA.61.022308

    Article  ADS  Google Scholar 

  19. Scarani, V., Iblisdir, S., Gisin, N., et al.: Quantum cloning. Rev. Mod. Phys. 77(4), 1225 (2005)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  20. Han, L.F., Yuan, H., Yang, M., Cao, Z.L.: Assisted cloning of an arbitrary unknown tow-qubit state via agenuine four-qubit entangled state and positive operator-value measure. Indian J. Pure Appl. Phys. 52, 563–570 (2014)

    Google Scholar 

  21. Murao, M., Vedral, V.: Remote information concentration using a bound entangled state. Phys. Rev. Lett. 86(2), 352–355 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Peng, J.Y., Luo, M.X., Mo, Z.W.: Remote information concentration via four-particle cluster state and by positive operator-value measurement. Int. J. Mod. Phys. B 27(18), 50091 (2013). https://doi.org/10.1142/S0217979213500914

    Article  ADS  MathSciNet  Google Scholar 

  23. Peng, J.Y., Lei, H.X., Mo, Z.W.: Faithful remote information concentration based on the optimal universal \(1\rightarrow 2\) telecloning of arbitrary two-qubit states. Int. J. Theor. Phys. 53(5), 1637–1647 (2014)

    Article  Google Scholar 

  24. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  ADS  CAS  Google Scholar 

  25. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982)

    Article  ADS  Google Scholar 

  26. Yuen, H.P.: Amplification of quantum states and noiseless photon amplifiers. Phys. Lett. A 113(8), 405–407 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  27. Pati, A.K., Braunstein, S.L.: Impossibility of deleting an unknown quantum state. Nature 404(6774), 164–165 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Zurek, W.H.: Quantum cloning. Schrödinger’s sheep. Nature 404(6774), 130–131 (2000)

    Article  CAS  PubMed  Google Scholar 

  29. Bužek, V., Hillery, M., Werner, R.: Optimal manipulations with qubits: universal NOT gate. Phys. Rev. A 60(4), R2626–R2629 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gisin, N., Popescu, S.: Spin flips and quantum information for antiparallel spins. Phys. Rev. Lett. 83, 432 (1999). https://doi.org/10.1103/PhysRevLett.83.432

    Article  ADS  CAS  Google Scholar 

  31. Jozsam R.: A stronger no-cloning theorem. https://doi.org/10.48550/arXiv.quant-ph/0204153. (2002)

  32. Pati, A.K.: Quantum cobwebs: Universal entangling of quantum states. Pramana 59(2), 221–228 (2002)

    Article  ADS  Google Scholar 

  33. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 44(1.2), 261–269 (2000)

    Article  Google Scholar 

  34. Bennett, C.H.: The thermodynamics of computation-a review. Int. J. Theoret. Phys. 21, 905–940 (1982)

    Article  CAS  Google Scholar 

  35. Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54(3), 1844–1852 (1996)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  36. Hillery, M., Bužek, V.: Quantum copying: fundamental inequalities. Phys. Rev. A 56, 1212–1216 (1997)

    Article  ADS  CAS  Google Scholar 

  37. Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153–2156 (1997)

    Article  ADS  CAS  Google Scholar 

  38. Bruß, D., DiVincenzo, D.P., Ekert, A., Fuchs, C.A., Macchiavello, C., Smolin, J.A.: Optimal universal and state-dependent quantum cloning. Phys. Rev. A 57(4), 2368–2378 (1998)

    Article  ADS  Google Scholar 

  39. Duan, L.M., Guo, G.C.: Probabilistic cloning and identification of linearly independent states. Phys. Rev. Lett. 80(22), 4999–5002 (1998)

    Article  ADS  CAS  Google Scholar 

  40. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59(1), 156–161 (1999)

    Article  ADS  CAS  Google Scholar 

  41. Bruß, D., Cinchetti, M., D-Ariano, G.M., Macchiavello, C.: Phase covariant quantum cloning. Phys. Rev. A 62(1) (2000). https://doi.org/10.1103/physreva.62.012302

  42. Werner, R.: Optimal cloning of pure states. Phys. Rev. A 58, 1827–1832 (1998)

    Article  ADS  CAS  Google Scholar 

  43. Fan, H.: Quantum cloning of mixed states in symmetric subspace. Phys. Rev. A 68(5), 054301 (2003). https://doi.org/10.1103/PhysRevA.68.054301

    Article  ADS  MathSciNet  CAS  Google Scholar 

  44. Zou, X.B., Pahlke, K., Mathis, W.: Scheme for the implementation of a universal quantum cloning machine via cavity-assisted atomic collisions in cavity QED. Phys. Rev. A 67(2) (2003). https://doi.org/10.1103/physreva.67.024304

  45. Zhan, Y.B.: Assisted cloning of an unknown two-particle entangled state. Phys. Lett. A 336(4–5), 317–323 (2005)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. Ma, P.C., Zhan, Y.B.: Scheme for implementing assisted cloning of an unknown \(d\)-dimension equatorial quantum state by remote state preparation. Commun. Theor. Phys. 51, 57–59 (2009)

    Article  ADS  Google Scholar 

  47. Han, L.F., Yuan, H., Yang, M., Cao, Z.L.: Assisted cloning of anarbitrary unknown two-qubit state via a genuine four-qubit entangled state and positive operator-valued measure. Indian J. Pure Appl. Phys. 52, 563–570 (2014)

    Google Scholar 

  48. Hou, K., Shi, S.H.: Scheme for cloning an unknown entangled state with assistance via non-maximally entangled cluster states. Int. J. Theor. Phys. 48(1), 167–177 (2009)

    Article  MathSciNet  Google Scholar 

  49. Zhan, Y.: A scheme for assisted cloning of a two-particle entangled state via GHZ class states. Chin. Opt. Lett. 3(101), S286–S289 (2005)

    ADS  Google Scholar 

  50. Ming, F., Yi-Min, L., Jun, L., et al.: Assisted cloning and orthogonal complementing of an arbitrary unknown two-qubit entangled state. Commun. Theor. Phys. 46(5), 849–852 (2006)

    Article  ADS  Google Scholar 

  51. Zhang, J., Yin, X.: Use of two-particle entangled states to teleport unknown two-particle quantum state. Comput. Eng. Appl. 51(18), 82–85 (2015)

    CAS  Google Scholar 

  52. Han, L.: Theoretical study on quantum state teleportation, assisted cloning and reconstruction. Anhui University (2015). https://doi.org/10.7666/d.Y2805032

  53. Araneda, G., Cisternas, N., Delgado, A.: Telecloning of qudits via partially entangled states. Quantum Inf. Process. 15, 3443–3458 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  54. Zhao J, Jiang J, Zhou Y, et al.: Multi-party deterministic joint RSP of arbitrary multi-qubit states via maximal slice states. Modern Phys. Lett. B. Condens. Matter Phys. Stat. Phys. Appl. Phys. (6), 36 (2022). https://doi.org/10.1142/S0217984921505990.

  55. An, N.B., Kim, J.: Collective remote state preparation. Int. J. Quantum Inf. 6(05), 105–1066 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

In fact, all of the authors’ contributions to this paper are important. The specific contributions are as follows. The first author played a major role in the conceptualization and writing of the article. The rest authors worked mainly on the overall framework and language of the article. The contribution of the paper is as follows, in Section 2, Our four authors communicate through discussion we put forward a new scheme for assisted cloning of an arbitrary unknown single-qubit state via a three-qubit maximal slice state as quantum channel under control of the supervisor. In Section 3, by using two three-qubit maximal slice states as quantum channel, we propose a scheme for cloning an arbitrary unknown two-qubit state with the permission of the controller and the help of a state preparer. In Section 3, we extend the above two schemes to the case of controlled and assisted cloning of any unknown n-qubit state via n three-qubit maximal slice states.The Section 3 was completed by Nueraminaimu Maihemuti and Dengxin Zhai. Finally, a brief discussion and conclusion are drawn in Section 4. The Section 4 was jointly completed by Nueraminaimu Maihemuti and Dengxin Zhai, as well as two corresponding authors Jiayin Peng and Jiangang Tang.

Corresponding author

Correspondence to Jiayin Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maihemuti, N., Peng, J., Yang, Z. et al. Controlled and Assisted Cloning of an Arbitrary Unknown States via Maximal Slice States. Int J Theor Phys 63, 18 (2024). https://doi.org/10.1007/s10773-023-05536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05536-0

Keywords

Navigation