Skip to main content
Log in

Lorentz-covariance of Position Operator and its Eigenstates for a Massive Spin 1/2 Field

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

A Correction to this article was published on 13 February 2024

This article has been updated

Abstract

We present a derivation of a position operator for a massive field with spin \({\textbf {1/2}}\), expressed in a representation-independent form of the Poincaré group. Using the recently derived Lorentz-covariant field spin operator, we obtain a corresponding field position operator through the total angular momentum formula. Acting on the Dirac spinor representation, the eigenvalues of the field position operator correspond to the spatial components of the Lorentz-covariant space-time coordinate \(\textbf{4}\)-vector. We show that the field position operator preserves the particle and the antiparticle character of the states. Thus, the field position operator can serve as a one-particle position operator for both particles and antiparticles, thereby avoiding an unusual fast-oscillating term, known as the Zitterbewegung, associated with the Dirac position operator. We show that the field position operator yields the same velocity as a classical free particle. The eigenstates of the field position operator satisfy the Newton-Wigner locality criteria and transform in a Lorentz-covariant manner. The field position operator becomes particle position and antiparticle position operators when acting on the particle and the antiparticle subspaces, both of which are Hermitian. Additionally, we demonstrate that within the particle subspace of the Dirac spinor space, the field position operator is equivalent to the Newton-Wigner position operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No Data associated in the manuscript.

Change history

Notes

  1. For complete

References

  1. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004). (and references therein)

    Article  ADS  MathSciNet  Google Scholar 

  2. Huang, L., Yu, H.-Y., Grebogi, C., Lai, Y.-C.: Relativistic Quantum Chaos. Phys. Rep. 753, 1 (2018). (and references therein)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Han, Y.D., Choi, T., Cho, S.Y.: Singularity of a relativistic vortex beam and proper relativistic observables. Sci. Rep. 10, 7417 (2020). (and references therein)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, W.: Essentials of relativistic quantum chemistry. J. Chem. Phys. 152, 180902 (2020)

    Article  Google Scholar 

  5. Schweppe, J. et al.: Observation of a Peak Structure in Positron Spectra from U+Cm Collisions. Phys. Rev. Lett. 51, 2261 (1983); Cowan, T. et al.: Anomalous Positron Peaks from Supercritical Collision Systems. Phys. Rev. Lett. 54, 1761 (1985); Berdermann, E. et al.: GSI Annual Report. GSI 91-1, p161 (1990)

  6. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610 (1928)

    Article  ADS  Google Scholar 

  7. Pryce, M.H.L.: The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles. Proc. R. Soc. Lond. A 195, 62 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  8. Møller, C.: On the definition of the centre of gravity of an arbitrary closed system in the theory of relativity. Available online: https://www.stp.dias.ie/Communications/DIAS-STP-Communications-005-Moller.pdf. Accessed 22 Jan 2020

  9. Newton, T.D., Wigner, E.P.: Localized states for elementary systems. Rev. Mod. Phys. 21, 400 (1949)

    Article  ADS  Google Scholar 

  10. Foldy, L.L., Wouthuysen, S.A.: On the Dirac theory of spin \(1/2 \) particles and its non-relativistic limit. Phys. Rev. 78, 29 (1950)

    Article  ADS  Google Scholar 

  11. Fleming, G.N.: Covariant Position Operators, Spin, and Locality. Phys. Rev. 137, B188 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  12. Choi, T.: Newton-Wigner position operator and the corresponding spin operator in relativistic quantum mechanics. J. Korean Phys. Soc. 66, 877 (2015)

    Article  ADS  Google Scholar 

  13. Zou, L., Zhang, P., Silenko, A.J.: Position and spin in relativistic quantum mechanics. Phys. Rev. A 101, 032117 (2020). (and references therein)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Kong, O.C.W., Ting, H.K.: \(E = mc^2\) versus Symmetry for Lorentz Covariant Physics. Chinese J. Phys. 83, 480 (2023). (and references therein)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon, Oxford (1958)

  16. Schrödinger, E.: Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. 24, 418–428 (1930)

    Google Scholar 

  17. O’Connell, R.F.: Electron interaction with the spin angular momentum of the electromagnetic field. J. Phys. A 50, 085306 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wightman, A.S.: On the localizability of quantum mechanical syetems. Rev. Mod. Phys. 34, 845 (1962)

    Article  ADS  Google Scholar 

  19. Fleming, G.N.: Nonlocal properties of stable particles. Phys. Rev. 139, B963 (1965)

    Article  ADS  Google Scholar 

  20. Hegerfeldt, G.C.: Violation of causality in relativistic quantum theory. Phys. Rev. Lett. 54, 2395 (1985)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  21. Coleman, S.: Quantum Field Theory. Lectures of Sidney Coleman. World Scientific Pub, Hackensack, New Jersey (2019)

  22. Ruijsenaars, S.N.M.: On newton-wigner localization and superluminal propagation speeds. Ann. Phys. (NY) 137, 33 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  23. Choi, T., Han, Y.D.: Lorentz-covariant spin operator for spin \(1/2\) massive fields as a physical observable. J. Korean Phys. Soc. 82, 448–454 (2023)

    Article  ADS  Google Scholar 

  24. Wigner, E. P.: On unitary representations of the inhomogeneous Lorentz group. Ann. of Math. 40, 149 (1939); Bargmann, V., Wigner, E. P.: Group theoretical discussion of relativistic wave equations. Proc. Nat. Acad. Sci. 34, 211 (1948)

  25. Choi, T., Cho, S.Y.: Spin operators for massive particles. arXiv:1410.0468 (2014)

  26. Schwartz, M.D.: Quantum Field Theory and the Standard Model. Cambridge University Press, Cambridge, New York, U.S.A (2013)

    Book  Google Scholar 

  27. Lubanski, J.K.: Sur la théorie des particules élémentaires de spin quelconque. Physica (Utrecht) 9, 310 (1942)

  28. Bogolubov, N.N., Logunov, A.A., Todorov, I.T.: General Principles of Quantum Field Theory. W. A. Benjamin, Kluwer, Dordrecht (1990)

  29. Céleri, L.C., Kiosses, V., Terno, D.K.: Spin and localization of relativistic fermions and uncertainty relations. Phys. Rev. A 94, 062115 (2016)

    Article  ADS  Google Scholar 

  30. Lee, H.: Relativistic massive particle with spin-\(1/2\): A vector bundle point of view. J. Math. Phys. 63, 012201 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  31. Gingrich, R. M., Adami, C.: Quantum Entanglement of Moving Bodies. Phys. Rev. Lett 89, 270402 (2002); Choi, T., Hur, J., Kim, J.: Relativistic effects on the spin entanglement of two massive Dirac particles. Phys. Rev. A 84, 012334 (2012)

Download references

Acknowledgements

This work was supported by a research grant from Seoul Women’s University (2023-0079).

Author information

Authors and Affiliations

Authors

Contributions

The author conceived the study, performed the research, conducted the analysis, and wrote the manuscript.

Corresponding author

Correspondence to Taeseung Choi.

Ethics declarations

Competing of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Dirac Hamiltonians

Appendix A: Dirac Hamiltonians

In this appendix, we derive the Dirac Hamiltonians for a particle and an antiparticle by using the parity-space inversion-operation. The parity operation transforms the left-handed spinor \(\psi _L(p,\lambda )\) to the right-handed spinor \(\psi _R(p,\lambda )\) and vice versa. Hence, the parity operation for the spinors \(\psi _{\pm \epsilon }(p,\lambda )\) in (9) can be represented by \(\pm \gamma ^0\), as shown in (10). Interestingly, the parity operation is also represented by the square of the inverse standard Lorentz boost, denoted as \(M^{-2}(\mathcal {L}_{{\textbf {p}}})\), which becomes:

$$\begin{aligned} M^{-2}(\mathcal {L}_{{\textbf {p}}})= e^{-\gamma ^5 \varvec{\sigma }\cdot {{\textbf {f}}}}=\frac{E_{{\textbf {p}}}}{m}-\frac{\gamma ^5 \varvec{\Sigma }\cdot {{\textbf {p}}}}{m}, \end{aligned}$$
(A1)

referring to \(M(\mathcal {L}_{{\textbf {p}}})\) in (24).

By equating the two representations of the parity as

$$\begin{aligned} M^{-2}(\mathcal {L}_{{\textbf {p}}}) \psi _{\pm \epsilon }(p,\lambda ) =\pm \gamma ^0 \psi _{\pm \epsilon }(p,\lambda ), \end{aligned}$$
(A2)

we can derive

$$\begin{aligned} \pm m \gamma ^0 \psi _{\pm \epsilon }(p,\lambda ) =( E_{{\textbf {p}}} -\gamma ^5 \varvec{\Sigma }\cdot {{\textbf {p}}}) \psi _{\pm \epsilon }(p,\lambda ). \end{aligned}$$
(A3)

These equations yield the Hamiltonians for a particle and an antiparticle, expressed as:

$$\begin{aligned} H_{P/AP} \psi _{\pm \epsilon }(p,\lambda ) = \gamma ^0 \varvec{\gamma }\cdot {{\textbf {p}}} \pm m \gamma ^0 \end{aligned}$$
(A4)

by using \(\gamma ^5 \Sigma ^k = \gamma ^0 \gamma ^k\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, T. Lorentz-covariance of Position Operator and its Eigenstates for a Massive Spin 1/2 Field. Int J Theor Phys 63, 10 (2024). https://doi.org/10.1007/s10773-023-05535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05535-1

Keywords

Navigation