Skip to main content
Log in

Semi- quantum Designated Verifier Signature Scheme

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on \(GHZ\)-like state, a semi- quantum designated verifier signature scheme (SQDVS) is proposed, which can be applied in E- bidding, software licensing, and E- voting. In this scheme, according to the measurement results of \(GHZ\)-like state with Z bases, the signer encrypts the classic original message to obtain the designated verifier signature. The designated verifier (DV) chooses certain unitary operations, then he/she recovers the original message by measuring \(GHZ\)-like state particles with Bell bases and verifies the signature. For the first time, a semi- quantum participant is involved, our designated verifier signature scheme can relatively reduce the cost of the signer’s signature. There are no quantum state swapping tests or one- way quantum functions in our scheme, which can simplify the scheme’s complexity and increase the efficiency of the signature. Meanwhile, because the third party is semi- trusted, timestamps and identity information are used to resolve disputes; furthermore, our SQDVS scheme can resist various attacks. In conclusion, our scheme has lower costs, higher efficiency, and more security than similar schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diffie, W., Hellman, M.: New direction in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    MathSciNet  Google Scholar 

  2. Saeednia, S., Kremer, S., Markowitch, O.: An efficient strong designated verifier signature scheme. In: Lim, J.I., Lee, D.H. (eds.) ICISC 2003, LNCS 2971(1), pp. 40–54. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6_4

    Chapter  Google Scholar 

  3. Ray, I., Ray, I., Narasimhamurthi, N.: An anonymous electronic voting protocol for voting over the internet. In: Proceedings Third International Workshop on Advanced Issues of E-Commerce and Web-Based Information Systems. WECWIS’01, pp. 188–190. IEEE (2001). https://doi.org/10.1109/WECWIS.2001.933922

    Chapter  Google Scholar 

  4. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1070(1), 143–154 (1996)

    Google Scholar 

  5. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its application to electronic voting. Lect. Notes Comput. Sci. 1666(1), 784 (1999)

    MathSciNet  Google Scholar 

  6. Huang, X., Mu, Y., Susilo, W., Wu, W.: Provably secure pairing-based convertible undeniable signature with short signature length. Lect. Notes Comput. Sci. 4575(1), 367–391 (1999)

    MathSciNet  Google Scholar 

  7. Kang, B., Boyd, C., Dawson, E.: A novel identity-based strong designated verifier signature scheme. J. Syst. Softw. 82(2), 270–273 (2009)

    Google Scholar 

  8. Lee, J., Chang, J., Lee, D.: Forgery attacks on Kang et al.’s identity-based strong designated verifier signature scheme and its improvement with security proof. Comput Electr Eng 36(5), 948–954 (2010)

    ADS  Google Scholar 

  9. Yang, F.Y., Liang, L.R., Hsu, C.C.: An improvement in strong designated verifier signatures. Int J. of Commun. Networks and Distrib Syst 5 13(3–4), 277–289 (2014)

    Google Scholar 

  10. Verma, G.K., Singh, B.B., Singh, H.: Bandwidth efficient designated verifier proxy signature scheme for healthcare wireless sensor networks. Ad Hoc Networks. 81, 100–108 (2018)

    Google Scholar 

  11. Rastegari, P., Berenjkoub, M., Dakhilalian, M., Susilo, W.: Universal designated verifier signature scheme with non-delegatability in the standard model. Inf. Sci. 479, 321–334 (2019)

    MathSciNet  Google Scholar 

  12. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    ADS  MathSciNet  Google Scholar 

  13. Huang, Y., Su, Z., Zhang, F., et al.: Quantum algorithm for solving hyper elliptic curve discrete logarithm problem. Quantum Inf. Process. 19, 62 (2020)

    ADS  Google Scholar 

  14. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv. (2001). https://arxiv.org/abs/quant-ph/0105032

  15. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    ADS  Google Scholar 

  16. Leggett, A.J.: The quantum measurement problem. Science. 307(5711), 871–872 (2005)

    ADS  Google Scholar 

  17. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    ADS  Google Scholar 

  18. Zhang, K.J., Sun, Y., Song, T.T., et al.: Cryptanalysis of the Quantum Group Signature Protocols. Int. J. Theor. Phys. 52, 4163–4173 (2013)

    MathSciNet  Google Scholar 

  19. Qin, H., Tang, W.K.S., Tso, R.: Batch quantum multi-proxy signature. Opt. Quant. Electron. 50, 450 (2018)

    Google Scholar 

  20. Xin, X., He, Q., Wang, Z., et al.: Security analysis and improvement of an arbitrated quantum signature scheme. Opt 189, 23–31 (2019)

    Google Scholar 

  21. He, Q., Xin, X., Yang, Q.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20, 26 (2021)

    ADS  MathSciNet  Google Scholar 

  22. Deng, X., Zhao, W., Shi, R., et al.: Quantum Digital Signature with Continuous-Variable. Int. J. Theor. Phys. 61, 144 (2022)

    MathSciNet  Google Scholar 

  23. Xin, X., Ding, L., Zhang, T., et al.: Provably secure arbitrated-quantum signature. Quantum Inf. Process. 21, 390 (2022)

    ADS  MathSciNet  Google Scholar 

  24. Ding, H.J., Chen, J.J., Ji, L., et al.: 280-km experimental demonstration of a quantum digital signature with one decoy state. Opt. Lett. 45(7), 1711–1714 (2020)

    ADS  Google Scholar 

  25. Zhang, C.H., Zhou, X.Y., Zhang, C.M., et al.: Twin-field quantum digital signatures. Opt. Lett. 46(15), 3757–3760 (2021)

    ADS  Google Scholar 

  26. Shi, W.M., Zhou, Y.H., Yang, Y.G.: A real quantum designated verifier signature scheme. Int. J. Theor. Phys. 54(9), 3115–3123 (2015)

    MathSciNet  Google Scholar 

  27. Shi, W.M., Wang, Y.M., Zhou, Y.H., Yang, Y.G., Zhang, J.B.: A scheme on converting quantum signature with public verifiability into quantum designated verifier signature. Optik. 164, 753–759 (2018)

    ADS  Google Scholar 

  28. Xin, X., Wang, Z., Yang, Q., et al.: Quantum designated verifier signature based on Bell states. Quantum Inf. Process. 19, 79 (2020)

    ADS  MathSciNet  Google Scholar 

  29. Zhang, Y., Xin, X., Li, F.: Secure and efficient quantum designated verifier signature scheme. Modern Phys Lett A. 35(18), 2050148 (2020)

    ADS  MathSciNet  Google Scholar 

  30. Zheng, M., Xue, K., Li, S., et al.: A practical quantum designated verifier signature scheme for E-voting applications. Quantum Inf. Process. 20, 230 (2021)

    ADS  MathSciNet  Google Scholar 

  31. Xin, X., Ding, L., Li, C., et al.: Quantum public-key designated verifier signature. Quantum Inf. Process. 21, 33 (2022)

    ADS  MathSciNet  Google Scholar 

  32. Zhang, L., Zhang, J.H., Xin, X.J., et al.: Quantum Designated Verifier Signature Scheme with Semi-Trusted Third-Party. Int. J. Theor. Phys. 62, 166 (2023)

    MathSciNet  Google Scholar 

  33. Iqbal, H., Krawec, W.O.: Semi-quantum cryptography. Quantum Inf Process 19, 97 (2020)

    ADS  Google Scholar 

  34. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    ADS  MathSciNet  Google Scholar 

  35. Xia, C., Li, H., Hu, J.: A semi-quantum blind signature protocol based on five-particle GHZ state. The Eur. Phys. J. Plus 136(6), 1–14 (2021)

    ADS  Google Scholar 

  36. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf Process. 15(5), 2067–2090 (2016)

    ADS  MathSciNet  Google Scholar 

  37. Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    ADS  MathSciNet  Google Scholar 

  38. Lang, Y.F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    MathSciNet  Google Scholar 

  39. Zhou, N.R., Zhu, K.N., Bi, W., Gong, L.H.: Semi-quantum identification. Quantum Inf. Process. 18(6), 1–17 (2019)

    ADS  MathSciNet  Google Scholar 

  40. Zhao, X.Q., Chen, H.Y., Wang, Y.Q., Zhou, N.R.: Semi-quantum bi-signature scheme based on w states. Int. J. Theor. Phys. 58(10), 3239–3251 (2019)

    MathSciNet  Google Scholar 

  41. Yang, C.-W., Lin, J., Tsai, C.-W., Cheng, C.-L.: Cryptanalysis of a Semi-Quantum Bi-Signature Scheme Based on W States. Entropy 24(10), 1408 (2022)

    ADS  MathSciNet  Google Scholar 

  42. Yang, C.W., Cheng, C.L.: Semi-quantum bi-signature scheme based on Bell states. Modern Phys. Lett. A. 37(39-40), 2250254-1-2250254-11 (2022). https://doi.org/10.1142/S0217732322502546

    Article  ADS  MathSciNet  Google Scholar 

  43. Zhao, X., Chen, T.: A Novel Semi-Quantum Co-Signature Scheme Based on GHZ States and Four-Particle Cluster States. Int. J. Theor. Phys. 62(4), 78 (2023)

    MathSciNet  Google Scholar 

  44. Dai, J., Zhang, S., Chang, Y., Li, X., Zhang, T.: A Semi-quantum Group Signature Scheme Based on Bell States. Artif. Intell. Secur. 12240, 246–257 (2020)

    Google Scholar 

  45. Chen, L.Y., Liao, Q., Tan, R.C., Gong, L.H., Chen, H.Y.: Offline arbitrated semi-quantum signature scheme with four-particle cluster state. Int. J. Theor. Phys. 59(12), 3685–3695 (2020)

    MathSciNet  Google Scholar 

  46. Zheng, T., Chang, Y., Yan, L., Zhang, S.B.: Semi-quantum proxy signature scheme with quantum walk-based teleportation. Int. J. Theor. Phys. 59(10), 3145–3155 (2020)

    MathSciNet  Google Scholar 

  47. Chen, B.C., Yan, L.L.: Quantum and Semi-Quantum Blind Signature Schemes Based on Entanglement Swapping. Int. J. Theor. Phys. 60(10), 4006–4014 (2021)

    ADS  MathSciNet  Google Scholar 

  48. Shmueli, O.: Semi-quantum tokenized signatures. In: 42nd Annual International Cryptology Conference (CRYPTO), LNCS 13507, pp. 296–319. University of California, Santa Barbara, CA (2022). https://doi.org/10.1007/978-3-031-15802-5_11

    Chapter  Google Scholar 

  49. Xia, C., Li, H., Hu, J.: Semi-quantum digital signature protocol based on Einstein–Podolsky–Rosen steering. J. Phys. A Math. Theor. 55(32), 325302 (2022)

    ADS  MathSciNet  Google Scholar 

  50. He, R.Z., Li, Z.Z., Wang, Q.H., et al.: Semi-quantum ring signature protocol based on multi-particle GHZ state. Quantum Inf. Process. 22(9), 337 (2023)

    ADS  MathSciNet  Google Scholar 

  51. Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A.: Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403(6769), 515–519 (2000)

    ADS  Google Scholar 

  52. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077–1088 (2013)

    ADS  MathSciNet  Google Scholar 

  53. Yu, K.F., Gu, J., Hwang, T., et al.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16, 194 (2017)

    ADS  MathSciNet  Google Scholar 

  54. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    MathSciNet  Google Scholar 

  55. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4(5), 325–360 (2004)

    MathSciNet  Google Scholar 

  56. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    ADS  Google Scholar 

  57. Kho, Y.X., Heng, S.H., Chin, J.J.: A Review of Cryptographic Electronic Voting. Symmetry. 14(5), 858 (2022)

    ADS  Google Scholar 

  58. Lee, B., Boyd, C., Dawson, E., Kim, K., Yang, J., Yoo, S.: Providing Receipt-Freeness in Mixnet-Based Voting Protocols. Inf Security and Cryptology - ICISC 2003(2971), 245–258 (2004)

    MathSciNet  Google Scholar 

  59. Wu, C.C., Chang, C.C., Lin, I.C.: New Sealed-Bid Electronic Auction with Fairness, Security and Efficiency. J Comput Sci Technol. 23, 253–264 (2008)

    Google Scholar 

  60. Yuan, M., Mu, Y., Rezaeibagha, F., Xu, L., Huang, X.: Controllable software licensing system for sub-licensing. Journal of Inf Security and Applications. 64, 103061 (2022)

    Google Scholar 

  61. Tian, Y., Li, J., Chen, X.B., et al.: An efficient semi-quantum secret sharing protocol of specific bits. Quantum Inf. Process. 20, 217 (2021)

    ADS  MathSciNet  Google Scholar 

  62. Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China [61502436]; the National Natural Science Foundation of China [61672471].

Author information

Authors and Affiliations

Authors

Contributions

Zhang Ling and Zhang Jia-Hao wrote the main manuscript text; Xin Xiang-Jun and Li Chao-Yang gave the modified advice to improve the manuscript; Huang min prepared the Table 3.

Corresponding authors

Correspondence to Ling Zhang, Jia-Hao Zhang or Min Huang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, JH., Xin, XJ. et al. Semi- quantum Designated Verifier Signature Scheme. Int J Theor Phys 62, 254 (2023). https://doi.org/10.1007/s10773-023-05509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05509-3

Keywords

Navigation