Skip to main content
Log in

Travelling-wave, Mixed-lump-kink and Mixed-rogue-wave-kink Solutions for an Extended (3+1)-dimensional Shallow Water Wave Equation in Oceanography and Atmospheric Science

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Shallow water waves are seen in oceanography, atmospheric science, and other fields. In this paper, we investigate an extended (3+1)-dimensional shallow water wave equation. We get the travelling-wave solutions via the polynomial-expansion method. Applying the Hirota method and symbolic computation, we derive some mixed-lump-kink and mixed-rogue-wave-kink solutions. Based on the mixed-lump-kink solutions, we graphically show the interaction between a lump and a kink soliton, and find two different cases: (1) the lump merges into the kink soliton; (2) the lump separates from the kink soliton. Based on the mixed-rogue-wave-kink solutions, we graphically analyze the interaction between the rogue wave and two-kink solitons, and find that the rogue wave emerges from the one kink soliton and merges into the other kink soliton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

This paper has no associated data.

References

  1. Seadawy, A.R., Cheemaa, N.: Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear Schrödinger equation in nonlinear optics. Mod. Phys. Lett. B 33, 1950203 (2019)

    Article  ADS  CAS  Google Scholar 

  2. Khater, N.M., Attia, R.A., Alodhaibi, S.S., Lu, D.: Novel soliton waves of two fluid nonlinear evolutions models in the view of computational scheme. Int. J. Mod. Phys. B 34, 2050096 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  3. Deng, G.F., Gao, Y.T., Ding, C.C., Su, J.J.: Solitons and breather waves for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics. Chaos Soliton. Fract. 140, 110085 (2020)

    Article  MathSciNet  Google Scholar 

  4. Shen, Y., Tian, B., Zhou, T.Y.: In nonlinear optics, fluid dynamics and plasma physics: Symbolic computation on a (2+1)-dimensional extended Calogero-Bogoyavlenskii-Schiff system. Eur. Phys. J. Plus 136, 572 (2021)

    Article  Google Scholar 

  5. Liu, W., Zhang, Y., Luan, Z., Zhou, Q., Mirzazadeh, M., Ekici, M., Biswas, A.: Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 96, 729 (2019)

    Article  Google Scholar 

  6. El-Shiekh, R.M., Gaballah, M.: New analytical solitary and periodic wave solutions for generalized variable-coefficients modified KdV equation with external-force term presenting atmospheric blocking in oceans. J. Ocean Eng. Sci. 7, 372 (2022)

    Article  Google Scholar 

  7. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3+1)- and (2+1)-dimensional Kadomtsev-Petviashvili equations. Nonlinear Dyn. 111, 3623 (2023)

    Article  Google Scholar 

  8. Gao, X.Y.: Letter to the Editor on the Korteweg-de Vries-type systems inspired by Results Phys. 51, 106624 (2023) and 50, 106566 (2023). Results Phys. 53, 106932 (2023)

    Article  Google Scholar 

  9. Chen, S.J., Ma, W.X., Lü, X.: Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)

    Article  MathSciNet  Google Scholar 

  10. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: Shallow-water-wave studies on a (2+1)-dimensional Hirota-Satsuma-Ito system: X-type soliton, resonant Y-type soliton and hybrid solutions. Chaos Soliton. Fract. 157, 111861 (2022)

  11. Kaur, L., Wazwaz, A.M.: Bright-dark lump wave solutions for a new form of the (3+1)-dimensional BKP-Boussinesq equation. Rom. Rep. Phys. 71, 1 (2019)

    Google Scholar 

  12. Singh, S., Kaur, L., Sakkaravarthi, K., Sakthivel, R., Murugesan, K.: Dynamics of higher-order bright and dark rogue waves in a new (2+1)-dimensional integrable Boussinesq model. Phys. Scr. 95, 115213 (2020)

    Article  ADS  CAS  Google Scholar 

  13. Gao, X.Y.: Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+1)-dimensional Burgers system. Chin. J. Phys. 86, 572 (2023)

    Article  MathSciNet  Google Scholar 

  14. Wu, X.H., Gao, Y.T., Yu, X., Li, L.Q., Ding, C.C.: Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber. Nonlinear Dyn. 111, 5641 (2023)

    Article  Google Scholar 

  15. Yang, B., Chen, J., Yang, J.: Rogue waves in the generalized derivative nonlinear Schrödinger equations. J. Nonlinear Sci. 30, 3027 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gao, X.T., Tian, B., Feng, C.H.: In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional Burgers system. Chin. J. Phys. 77, 2818 (2022)

    Article  MathSciNet  Google Scholar 

  17. Shen, Y., Tian, B.: Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves. Appl. Math. Lett. 122, 107301 (2021)

    Article  Google Scholar 

  18. Mou, D.S., Dai, C.Q.: Nondegenerate solitons and collision dynamics of the variable-coefficient coupled higher-order nonlinear Schrödinger model via the Hirota method. Appl. Math. Lett. 133, 108230 (2022)

    Article  Google Scholar 

  19. Sun, H.Q., Zhu, Z.N.: Darboux transformation and soliton solution of the nonlocal generalized Sasa-Satsuma equation. Mathematics 11, 865 (2023)

    Article  Google Scholar 

  20. Yang, D.Y., Tian, B., Tian, H.Y., Wei, C.C., Shan, W.R., Jiang, Y.: Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber. Chaos Soliton. Fract. 156, 111719 (2022)

    Article  Google Scholar 

  21. Wu, X.H., Gao, Y.T.: Generalized Darboux transformation and solitons for the Ablowitz-Ladik equation in an electrical lattice. Appl. Math. Lett. 137, 108476 (2023)

  22. Ma, Y.X., Tian, B., Qu, Q.X., Wei, C.C., Zhao, X.: Bäcklund transformations, kink soliton, breather-and travelling-wave solutions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics. Chin. J. Phys. 73, 600 (2021)

    Article  Google Scholar 

  23. Dong, S., Lan, Z.Z., Gao, B., Shen, Y.: Bäcklund transformation and multi-soliton solutions for the discrete Korteweg–de Vries equation. Appl. Math. Lett. 125, 107747 (2022)

    Article  Google Scholar 

  24. Kumar, M., Tiwari, A.K.: Soliton solutions of BLMP equation by Lie symmetry approach. Comput. Math. Appl. 75, 1434 (2018)

    Article  MathSciNet  Google Scholar 

  25. Kumar, S., Jadaun, V., Ma, W.X.: Application of the Lie symmetry approach to an extended Jimbo-Miwa equation in (3+1) dimensions. Eur. Phys. J. Plus 136, 1 (2021)

    Article  Google Scholar 

  26. Burguete, J., García-Navarro, P., Murillo, J.: Numerical boundary conditions for globally mass conservative methods to solve the shallow-water equations and applied to river flow. Int. J. Numer. Methods Fluids 51, 585 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  27. Gao, X.Y.: Oceanic shallow-water investigations on a generalized Whitham-Broer-Kaup-Boussinesq-Kupershmidt system. Phys. Fluids 35, 127106 (2023)

    Article  ADS  CAS  Google Scholar 

  28. Korteweg, D.J., Vries, G.D.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39, 422 (1895)

    Article  MathSciNet  Google Scholar 

  29. He, J.H.: Variational principle for the generalized KdV-Burgers equation with fractal derivatives for shallow water waves. J. Appl. Comput. Mech. 6, 735 (2020)

    Google Scholar 

  30. Aljahdaly, N.H., Shah, R., Agarwal, R.P., Botmart, T.: The analysis of the fractional-order system of third-order KdV equation within different operators. Alex. Eng. J. 61, 11825 (2022)

    Article  Google Scholar 

  31. Cui, W., Liu, Y.: Nonlocal symmetries and interaction solutions for the (n+1)-dimensional generalized Korteweg-de Vries equation. Phys. Scr. 98, 045204 (2023)

    Article  ADS  Google Scholar 

  32. Osman, M.S., Wazwaz, A.M.: An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-dimensional KdV equation with variable coefficients. Appl. Math. Comput. 321, 282 (2018)

    MathSciNet  Google Scholar 

  33. Agarwal, P., Hyder, A.A., Zakarya, M., AlNemer, G., Cesarano, C., Assante, D.: Exact solutions for a class of Wick-type stochastic (3+1)-dimensional modified Benjamin-Bona-Mahony equations. Axioms 8, 134 (2019)

    Article  Google Scholar 

  34. Kumar, S., Niwas, M., Hamid, I.: Lie symmetry analysis for obtaining exact soliton solutions of generalized Camassa-Holm-Kadomtsev-Petviashvili equation. Int. J. Mod. Phys. B 35, 2150028 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  35. Yang, Y., Fan, E.: On the long-time asymptotics of the modified Camassa-Holm equation in space-time solitonic regions. Adv. Math. 402, 108340 (2022)

    Article  MathSciNet  Google Scholar 

  36. Wazwaz, A.M.: New integrable (2+1)- and (3+1)-dimensional shallow water wave equations: multiple soliton solutions and lump solutions. Int. J. Numer. Method. H. 32, 138 (2022)

    Article  Google Scholar 

  37. Han, P.F., Zhang, Y.: Linear superposition formula of solutions for the extended (3+1)-dimensional shallow water wave equation. Nonlinear Dyn. 109, 1019 (2022)

    Article  Google Scholar 

  38. Gao, X.Y., Guo, Y.J. Shan, W.R.: Letter to the Editor on an extended time-dependent (3+1)-dimensional shallow water wave equation in an ocean or a river. Results Phys. 43, 106053 (2022)

  39. Boiti, J., Leon, J.J., Manna, M.A., Pempinelli, F.: On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions. Inverse Prob. 2, 271 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  40. Seadawy, A.R., Ali, A., Helal, M.A.: Analytical wave solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli and Boiti-Leon-Manna-Pempinelli equations by mathematical methods. Math. Method. Appl. Sci. 44, 14292 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  41. Hirota, R.: The direct method in soliton theory. Cambridge University Press 155 (2004)

  42. Zhang, J.B., Ma, W.X.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 74, 591 (2017)

    Article  MathSciNet  Google Scholar 

  43. Kaur, L., Wazwaz, A.M.: Dynamical analysis of lump solutions for (3+1) dimensional generalized KP-Boussinesq equation and Its dimensionally reduced equations. Phys. Scr. 93, 7 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Contributions

Shu-Jun Meng, Bo Tian, Shao-Hua Liu and Xiao-Tian Gao wrote the main manuscript text and Shu-Jun Meng prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Bo Tian.

Ethics declarations

Compliance with ethical standards

Research does not involve Human Participants and/or Animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, SJ., Tian, B., Liu, SH. et al. Travelling-wave, Mixed-lump-kink and Mixed-rogue-wave-kink Solutions for an Extended (3+1)-dimensional Shallow Water Wave Equation in Oceanography and Atmospheric Science. Int J Theor Phys 63, 25 (2024). https://doi.org/10.1007/s10773-023-05477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05477-8

Keywords

Navigation