Skip to main content
Log in

Scalar Field Cosmology with Powerlaw and Hybrid Expansion Law in Symmetric Teleparallel Gravity

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, scalar field approaches have been widely considered in cosmological models due to their potential for useful investigation of the cosmological evolution of the Universe. The use of a scalar field as a matter source in a cosmological model within symmetric teleparallel gravity is as interesting as many other modified gravity models sourced by a scalar field. In this paper, we investigate the repercussions of power law and hybrid expansion laws in symmetric teleparallel gravity using an associated scalar field as a total matter source. We find that for both models, a normal scalar field is required to provide a viable description of the Universe’s evolution, as opposed to a phantom scalar field, from an ad-hoc introduction of these two expansion laws. To back up this method of implementing these two ad-hoc expansion laws we also examined the evolution of the Hubble parameter by solving the Raychaudhuri equation which yields power law solutions in early radiation and matter dominated epochs and de-Sitter like solution in late Universe. We analysed this evolution in relation to observed Hubble data and found that the dependence of the model parameters in reproducing various epochs of the Universe is non-minimal. Furthermore, to test the stability of our models, we looked into the evolution of the speed of sound squared, which indicates that our models are stable to density perturbations. Finally, we utilize the geometrical method of \(\varvec{Om}\) diagnostics to conclude that our model exhibits quintessence like behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article.

References

  1. Bassett, B.A., Tsujikawa, S., Wands, D.: Inflation dynamics and reheating. Rev. Mod. Phys. 78, 537 (2006). https://doi.org/10.1103/RevModPhys.78.537

    Article  ADS  Google Scholar 

  2. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980). https://doi.org/10.1016/0370-2693(80)90670-x

    Article  ADS  MATH  Google Scholar 

  3. Buchdahl, H.A.: Non-Linear Lagrangians and Cosmological Theory. Mon. Not. R. Astron. Soc. 150, 1 (1970). https://doi.org/10.1093/mnras/150.1.1

    Article  ADS  Google Scholar 

  4. Martins, C.F., Salucci, P.: Analysis of rotation curves in the framework of \(R^n\). Mon. Not. R. Astron. Soc. 381, 1103 (2007). https://doi.org/10.1111/j.1365-2966.2007.12273.x

    Article  ADS  Google Scholar 

  5. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 692, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Sotiriou, T.P., Faraoni, V.: \(f(R)\) theories of gravity. Rev. Mod. Phys. 82, 451 (2010). https://doi.org/10.1103/revmodphys.82.451

    Article  ADS  MATH  Google Scholar 

  7. De Felice, A., Tsujikawa, S.: f(R) Theories. Living Rev. Relativ. 13, 1 (2010). https://doi.org/10.12942/lrr-2010-3

  8. Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., Deustua, S.E., Fabbro, S., Goobar, A., Groom, D.E., Hook, I.M., Kim, A.G., Kim, M.J., Lee, Nunes, N.J., Pain, R., Pennypacker, C.R., Quimby, R.M., Lidman, C., Ellis, R.S.: Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

  9. Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A.H., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P., Leibundgut, B., Phillips, M.M., Reiss, D., Schmidt, B.P., Schommer, R.A., Smith, E., Spyromilio, J., Stubbs, C.W., Suntzeff, N.B., Tonry, J.L.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

  10. Riess, A.G., Kirshner, R.P., Schmidt, B.P., Jha, S., Challis, P., Garnavich, P.M., Esin, A.A., Carpenter, C.L., Grashius, R., Schild, R.E., Berlind, P., Huchra, J.P., Prosser, C.F., Falco, E.E., Benson, P.J., Briceno, C., Brown, W.R., Caldwell, N., Dell’Antonio, I.P., Filippenko, A.V.: BVRI Light Curves for 22 Type Ia Supernovae. Astron. J. 117, 707 (1999). https://doi.org/10.1086/300738

  11. Cai, Y-F., Capozziello, S., De Laurentis, M., Saridakis, E.N.: f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 79, 106901(2016). https://doi.org/10.1088/0034-4885/79/10/106901

  12. Yang, R.-J.: New types of f(T) gravity. Eur. Phys. J. C 71, 1797 (2011). https://doi.org/10.1140/epjc/s10052-011-1797-9

    Article  ADS  Google Scholar 

  13. Lazkoz, R., Lobo, F.S.N., Ortiz-Baños, M., Salzano, V.: (2019). Observational constraints of f(Q) gravity. Phys. Rev. D, 100, 104027 (2019). https://doi.org/10.1103/PhysRevD.100.104027

  14. Khyllep, W., Dutta, J., Saridakis, E.N., Yesmakhanova, K.: Cosmology in \(f(Q)\) gravity: A unified dynamical systems analysis of the background and perturbations. Phys. Rev. D 107, 044022 (2023). https://doi.org/10.1103/physrevd.107.044022

    Article  ADS  MathSciNet  Google Scholar 

  15. Jiménez, J.B., Heisenberg, L., Koivisto, T.S., Pekar, S.: Cosmology in f(Q) geometry. Phys. Rev. D 101, 103507 (2020). https://doi.org/10.1103/physrevd.101.103507

    Article  ADS  MathSciNet  Google Scholar 

  16. Flathmann, K., Hohmann, M.: Post-Newtonian limit of generalized symmetric teleparallel gravity. Phys. Rev. D 103, 044030 (2021). https://doi.org/10.1103/PhysRevD.103.044030

    Article  ADS  MathSciNet  Google Scholar 

  17. Mandal, S.K., Wang, D., Sahoo, P.: Cosmography in f(Q) gravity. Phys. Rev. D 102, 124029 (2020). https://doi.org/10.1103/PhysRevD.102.124029

    Article  ADS  MathSciNet  Google Scholar 

  18. D’Ambrosio, F., Garg, M., Heisenberg, L.: Non-linear extension of non-metricity scalar for MOND. Phys. Lett. B 811, 135970 (2020). https://doi.org/10.1016/j.physletb.2020.135970

    Article  MathSciNet  MATH  Google Scholar 

  19. Dimakis, N., Paliathanasis, A., Christodoulakis, T.: Quantum cosmology in f(Q) theory. Class. Quantum Gravity 38, 225003 (2021). https://doi.org/10.1088/1361-6382/ac2b09

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Nakayama, Y.: Weyl transverse diffeomorphism invariant theory of symmetric teleparallel gravity. Class. Quantum Gravity 39, 145006 (2021). https://doi.org/10.1088/1361-6382/ac776b

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Khyllep, W., Paliathanasis, A., Dutta, J.: Cosmological solutions and growth index of matter perturbations in \(f(Q)\) gravity. Phys. Rev. D 103, 103521 (2021). https://doi.org/10.1103/PhysRevD.103.103521

    Article  ADS  MathSciNet  Google Scholar 

  22. Hohmann, M.: General covariant symmetric teleparallel cosmology. Phys. Rev. D 104, 124077 (2021). https://doi.org/10.1103/PhysRevD.104.124077

    Article  ADS  MathSciNet  Google Scholar 

  23. Wang, W.L., Chen, H., Katsuragawa, T.: Static and spherically symmetric solutions in f(Q) gravity. Phys. Rev. D 105, 024060 (2022). https://doi.org/10.1103/PhysRevD.105.024060

    Article  ADS  MathSciNet  Google Scholar 

  24. Quiros, I.: Nonmetricity theories and aspects of gauge symmetry. Phys. Rev. D 105, 104060 (2022). https://doi.org/10.1103/PhysRevD.105.104060

    Article  ADS  MathSciNet  Google Scholar 

  25. Frusciante, N.: Signatures of f(Q) gravity in cosmology. Phys. Rev. D 103, 044021 (2021). https://doi.org/10.1103/PhysRevD.103.044021

    Article  ADS  MathSciNet  Google Scholar 

  26. Lymperis, A.: Late-time cosmology with phantom dark-energy in f(Q) gravity. JCAP 2022, 018 (2022). https://doi.org/10.1088/1475-7516/2022/11/018

  27. Sahoo, P., De, A., Loo, T.J., Sahoo, P.K.: Periodic cosmic evolution in f(Q) gravity formalism. Commun. Theor. Phys. 74, 125402 (2022). https://doi.org/10.1088/1572-9494/ac8d8a

  28. Atayde, L.M., Frusciante, N.: Can f(Q)gravity challenge \(\Lambda \)CDM? Phys. Rev. D 104, 064052 (2021). https://doi.org/10.1103/10.1103/PhysRevD.104.064052

    Article  ADS  Google Scholar 

  29. Anagnostopoulos, F., Basilakos, S., Saridakis, E.N.: First evidence that non-metricity f(Q) gravity could challenge \(\Lambda \)CDM. Phys. Lett. B 822, 136634 (2021). https://doi.org/10.1016/j.physletb.2021.136634

    Article  MathSciNet  MATH  Google Scholar 

  30. Solanki, R., Rana, D.S., Mandal, S., K, S.P.: Viscous fluid cosmology in symmetric teleparallel gravity. arXiv:2211.03514

  31. Hassan, Z., Ghosh, S., K, S.P., Rao.: GUP corrected Casimir wormholes in \(f(Q)\) gravity. arXiv:2209.02704

  32. Sokoliuk, O., Arora, S., Praharaj, S., Baransky, A., K, S.P.: On the impact of \(f(Q)\) gravity on the large scale structure. Mon. Not. R. Astron. Soc. 522, 252 (2023). https://doi.org/10.1093/mnras/stad968

  33. Koussour, M., Arora, S., Gogoi, D.J., Bennai, M., Sahoo, P.K.: Constant sound speed and its thermodynamical interpretation in f(Q) gravity. Nucl. Phys. B 990, 116158 (2023). https://doi.org/10.1016/j.nuclphysb.2023.116158

    Article  MathSciNet  MATH  Google Scholar 

  34. Gadbail, G.N., Arora, S., Sahoo, P.K.: Cosmology with viscous generalized Chaplygin gas in f(Q) gravity. Ann. Phys. 451, 169269 (2023). https://doi.org/10.1016/j.aop.2023.169269

    Article  MathSciNet  MATH  Google Scholar 

  35. Solanki, R., Arora, S., K, S.P., Moraes.: Bulk viscous fluid in symmetric teleparallel cosmology: Theory versus experiment. Universe 9, 12 (2022). https://doi.org/10.3390/universe9010012

  36. Hassan, Z., Mustafa, G., Santos, Sahoo, P.K.: Embedding procedure and wormhole solutions in f(Q) gravity. Europhys. Lett. 139, 39001 (2022). https://doi.org/10.1209/0295-5075/ac8017

  37. Sokoliuk, O., Hassan, Z., Sahoo, P.K., Baransky, A.: Traversable wormholes with charge and non-commutative geometry in the f(Q) gravity. Ann. Phys. 443, 168968 (2022). https://doi.org/10.1016/j.aop.2022.168968

  38. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Capozziello, S., Shokri, M.: Slow-roll inflation in \(f(Q)\) non-metric gravity. Phys. Dark. Univ. 37, 101113 (2022). https://doi.org/10.1016/j.dark.2022.101113

  40. Shabani, H., De, A., Loo, T-H., Saridakis, E.N.: Cosmology of \(f(Q)\) gravity in non-flat Universe. arXiv:2306.13324v1 (gr-qc)

  41. Bajardi, F., Capozziello, S.: Minisuperspace quantum cosmology in f(Q) gravity. Eur. Phys. J. C 83, 531 (2023). https://doi.org/10.1140/epjc/s10052-023-11703-8

    Article  ADS  MATH  Google Scholar 

  42. Jasim, M.K., Maurya, S.K., Jassim, A.K., Mustafa, G., Nag, R., Al Buwaiqi, I.S.: Minimally deformed anisotropic solution generated by vanishing complexity factor condition in \(f(Q)\)-gravity theory. Phys. Scr. 98, 045305 (2023). https://doi.org/10.1088/1402-4896/acbfeb

  43. Dialektopoulos, K.F., Koivisto, T.S., Capozziello, S.: Noether symmetries in symmetric teleparallel cosmology. Eur. Phys. J. C 79, 606 (2019). https://doi.org/10.1140/epjc/s10052-019-7106-8

    Article  ADS  Google Scholar 

  44. Bairagi, M.: Power-law inflation with scalar field assisted \(R^2\) gravity: a perturbative approach. Phys. Scr. 95, 085003 (2020). https://doi.org/10.1088/1402-4896/ab9b45

  45. Akarsu, Ö., Kumar, S., Myrzakulov, R., Sami, M., Xu, L.: Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints. JCAP 2014, 022 (2014). https://doi.org/10.1088/1475-7516/2014/01/022

    Article  Google Scholar 

  46. Ellis, G.F.R., Madsen, M.S.: Exact scalar field cosmologies. Class. Quantum Gravity 8, 667 (1991). https://doi.org/10.1088/0264-9381/8/4/012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Koussour, M., Pacif, S.K.J., Bennai, M., Sahoo, P.K.: A new parametrization of hubble parameter in \(f(Q)\) gravity. Fortschr. Phys. 2200172 (2023). https://doi.org/10.1002/prop.202200172

  48. Sethi, G., Dev, A., Jain, D.: Cosmological constraints on a power law universe. Phys. Lett. B 624, 135 (2005). https://doi.org/10.1016/j.physletb.2005.08.005

    Article  ADS  Google Scholar 

  49. Dev, A., Safonova, M., Jain, D., Lohiya, D.: Cosmological tests for a linear coasting cosmology. Phys. Lett. B 548, 12 (2002). https://doi.org/10.1016/s0370-2693(02)02814-9

  50. Yadav, A.K., Sahoo, P.K., Bhardwaj, V.: Bulk viscous bianchi-I embedded cosmological model in \(f(R, T) = f_1(R) + f_2(R)f_3(T)\) gravity. Mod. Phys. Lett. A 34, 1950145 (2019). https://doi.org/10.1142/S0217732319501451

  51. Tripathy, S.K., Pradhan, S., Naik, Z., Behera, D., Mishra, B.K.: Unified dark fluid and cosmic transit models in Brans-Dicke theory. Phys. Dark Universe 30, 100722 (2020). https://doi.org/10.1016/j.dark.2020.100722

  52. Tripathy, S.K., Pradhan, S.K., Parida, P., Behera, D., Khuntia, R.K., Mishra, B.: Cosmic transit models in an extended gravity theory. Phys. Scr. 95, 115001 (2020). https://doi.org/10.1088/1402-4896/abba4d

  53. Tripathy, S.K., Mishra, B., Khlopov, M., Ray, S.: Cosmological models with a hybrid scale factor. Int. J. Mod. Phys. D 30, 2140005 (2021). https://doi.org/10.1142/S0218271821400058

  54. Zhang, C., Zhang, H., Yuan, S., Liu, S., Zhang, T.-J., Sun, Y.: Four new observationalH(z) data from luminous red galaxies in the sloan digital sky survey data release seven. Res. Astron. Astrophys. 14, 1221 (2014). https://doi.org/10.1088/1674-4527/14/10/002

    Article  ADS  Google Scholar 

  55. Simon, J., Verde, L., Jimenez, R.: Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D. 71, 123001 (2005). https://doi.org/10.1103/PhysRevD.71.123001

  56. Moresco, M., Cimatti, A., Jimenez, R., Pozzetti, L., Zamorani, G., Bolzonella, M., Dunlop, J.C., Lamareille, F., Mignoli, M., Pearce, H., Rosati, P., Stern, D., Verde, L., Zucca, E., Carollo, C.M., Contini, T., Kneib, J.-P., Le Fevre, O., Lilly, S.J., Mainieri, V.: Improved constraints on the expansion rate of the Universe up to z \(\sim \) 1.1 from the spectroscopic evolution of cosmic chronometers. JCAP 2012, 006 (2012). https://doi.org/10.1088/1475-7516/2012/08/006

  57. Alam, S., Ata, M., Bailey, S.J., Beutler, F., Bizyaev, D., Blazek, J., Bolton, A.S., Brownstein, J.R., Burden, A., Chuang, C.-H., Comparat, J., Cuesta, A.J., Dawson, K.S., Eisenstein, D.J., Escoffier, S., Gil-Marín, H., Grieb, J.N., Hand, N., Ho, S., Kinemuchi, K.: The clustering of galaxies in the completed SDSS-III Baryon oscillation spectroscopic survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 470, 2617 (2017). https://doi.org/10.1093/mnras/stx721

    Article  ADS  Google Scholar 

  58. Moresco, M., Pozzetti, L., Cimatti, A., Jimenez, R., Maraston, C., Verde, L., Thomas, D., Citro, A., Tojeiro, R., Wilkinson, D.: A 6\(\%\) measurement of the Hubble parameter at z\(\sim \)0.45: direct evidence of the epoch of cosmic re-acceleration. JCAP 2016, 014 (2016). https://doi.org/10.1088/1475-7516/2016/05/014

  59. Ratsimbazafy, A.L., Loubser, S.I., Crawford, S.M., Cress, C.M., Bassett, B.A., Nichol, R.C., Väisänen, P.: Age-dating luminous red galaxies observed with the Southern African large telescope. Mon. Not. R. Astron. Soc. 467, 3239 (2017). https://doi.org/10.1093/mnras/stx301

    Article  ADS  Google Scholar 

  60. Moresco, M.: Raising the bar: new constraints on the hubble parameter with cosmic chronometers at z \(\sim \) 2. Mon. Not. R. Astron. Soc. 450, L16 (2015). https://doi.org/10.1093/mnrasl/slv037

    Article  ADS  Google Scholar 

  61. Delubac, T., Bautista, J.E., Busca, N.G., Rich, J., Kirkby, D., Bailey, S.J., Font-Ribera, A., Slosar, A., Lee, K.G., Pieri, M.M., Hamilton, J.C., Aubourg, E., Blomqvist, M., Bovy, J., Brinkmann, J., Carithers, W., Dawson, K.S., Eisenstein, D.J., Gontcho A Gontcho, S., Kneib, J.P., Marc Le Goff, J., Margala, D., Miralda-Escudé, J., Myers, A.D., Nichol, R.C., Noterdaeme, P., O’Connell, R., Olmstead, M.D., Delabrouille, N.P., Pâris, I., Petitjean, P., Ross, N.P., Rossi, G., Schlege, D.J., Schneider, D.P., Weinberg, D.H., Yèche, C., York, D.G.: Baryon acoustic oscillations in the Ly\(\alpha \) forest of BOSS DR11 quasars. Astron. Astrophys. 574, A59 (2015). https://doi.org/10.1051/0004-6361/201423969

  62. Font-Ribera, A., Kirkby, D., Busca, N.G., Miralda-Escude, J., Ross, N.P., Slosar, A., Rich, J., Aubourg, E., Bailey, S.J., Bhardwaj, V., Bautista, J.E., Beutler, F., Bizyaev, D., Blomqvist, M., Brewington, H., Brinkmann, J., Brownstein, J.R., Carithers, B., Dawson, K.S., Delubac, T., Ebelke, G., Eisenstein, D.J., Ge, J., Kinemuchi, K., Lee, K.G., Malanushenko, V., Malanushenko, E., Marchante, M., Margala, D., Muna, D., Myers, A.D., Noterdaeme, P., Oravetz, D., Delabrouille, N.P., Pâris, I., Petitjean, P., Pieri, M.M., Rossi, G., Schneider, D.P., Simmons, A., Viel, M., Yeche, C., York, D.G.: Quasar-Lyman \(\alpha \) forest cross-correlation from BOSS DR11: Baryon acoustic oscillations. JCAP 2014, 027 (2014). https://doi.org/10.1088/1475-7516/2014/05/027

  63. Zubair, M., Muneer, Q., Güdekli, E.: Thermodynamics and stability analysis of tsallis holographic dark energy (THDE) models in F(R,T) gravity. Ann. Phys. 445, 169068 (2022). https://doi.org/10.1016/j.aop.2022.169068

  64. Xu, L., Wang, Y.-S., Noh, H.: Unified dark fluid with constant adiabatic sound speed and cosmic constraints. Phys. Rev. D. 85, 043003 (2012). https://doi.org/10.1103/PhysRevD.85.043003

  65. Sahni, V., Shafieloo, A., Starobinsky, A.A.: Two new diagnostics of dark energy. Phys. Rev. D 78, 103502 (2008). https://doi.org/10.1103/PhysRevD.78.103502

  66. Zunckel, C., Clarkson, C.: Consistency tests for the cosmological constant. Phys. Rev. Lett. 101, 181301 (2008). https://doi.org/10.1103/PhysRevLett.101.181301

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.M.G contributed to the idea, implementation, typesetting and carried out the work in Sections 7, 8, 9. R.M. carried out the work contained in Section 5.2 and and inserted the references. S.T. carried out the work contained in Section 6. S.S.A carried out the calculations contained in the Section 5.1. S.P. prepared the figures contained in Section 5.1. K.B. contributed to the implementation of the MCMC sampling in the work and proof-reading of the manuscript. R.C contributed to the proof-reading of the manuscript. A.D. contributed to the proof-reading and a few reference insertions in the manuscript.

Corresponding author

Correspondence to Mrinnoy M. Gohain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mrinnoy M. Gohain, Rajdeep Mazumdar, Shama Tanveer, Syeda Sanjida Aafreen, Shilpi Pandey, Kalyan Bhuyan, Ranjan Changmai and Aditya Dahal are contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohain, M.M., Mazumdar, R., Tanveer, S. et al. Scalar Field Cosmology with Powerlaw and Hybrid Expansion Law in Symmetric Teleparallel Gravity. Int J Theor Phys 62, 213 (2023). https://doi.org/10.1007/s10773-023-05470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05470-1

Keywords

Navigation