Skip to main content
Log in

Duffin-Kemmer-Petiau Oscillator with Spin Non-Commutativity

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this study, we provide the precise solution to the Duffin-Kemmer-Petiau Oscillator equation within the framework of spin non-commutativity in both one-dimensional and two-dimensional scenarios. Our methodology involves an algebraic approach that encompasses the extenion of position \(\hat{x}\) and momentum \(\hat{p}\) operators. This extension allows us to compute the energy spectrum \(E_{n}\) and the wave function \(\phi \). Notably, our finding indicate that in the one-dimensional scenario, the wave function \(\phi \)is represented using Hermite polynomials \(H_{n}\), while in the two-dimensional scenario, it is expressed through the confluent hypergeometric function \(_{1}F_{1}\left( -n,\left| l\right| +1,\frac{1}{\ m\omega } p^{2}\right) .\) We systematically examined limiting cases, particularly when \(\theta \rightarrow 0\) and \(k\rightarrow 0\). Additionally, we conducted an in-depth analysis of thermal properties (ZUFCS), representing them visually through graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Battisti, M.V.: Meljanac, S: Modification of Heisenberg uncertainty relations in noncommutative Snyder space-time geometry. Phys. Revi. D 79, 067505 (2009)

    Article  ADS  Google Scholar 

  2. Dulat, S., Li, K.: Quantum Hall effect in noncommutative quantum mechanics. Eur. Phys. J. C, 163 (2009)

  3. Dayi, Ö.F., Jellal, A.: Hall effect in noncommutative coordinates. J. Math. Phys. 43, 4592 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Dayi, O.F., Kelleyane, L.T.: Wigner functions for the landau problem in noncommutative spaces. Mode. Phys. Lett. A. 17, 1937 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. De Nittis, G., Sandoval, M.: The Noncommutative Geometry of the Landau Hamiltonian: Metric Aspects. Symm. Integrab. and Geomet: Metho. and Applicat. SIGMA. 16, 146 (2020)

  6. Chaichian, M., Sheikh-Jabbari, M.M., Tureanu, A.: Non-commutativity of space-time and the hydrogen atom spectrum. Eur. Phys. J. C 36, 251 (2004)

    Article  ADS  Google Scholar 

  7. Bertolami, O., Queiroz, R.: Phase-space noncommutativity and the Dirac equation. Phys. Lette. A. 375, 4116 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Cai, S., Jing, T., Guo, G.: Zhang, R: Dirac oscillator in noncommutative phase space. Intern. J. of Theor. Phys. 49, 1699 (2010)

    Article  ADS  MATH  Google Scholar 

  9. Frenkel, J., Pereira, S.H.: Coordinate noncommutativity in strong nonuniform magnetic fields. Phys. Revi. D. 69, 127702 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. Adorno, T.C., Gitman, D.M., Shabad, A.E., Vassilevich, D.V.: Noncommutative magnetic moment of charged particles. Phys. Revi. D. 84, 085031 (2011)

    Article  ADS  Google Scholar 

  11. Ijavi, M.: New Parameters of Non-commutativity in Quantum Mechanics. Iran J Sci Technol Trans Sci. Springer. 1 (2020). https://doi.org/10.1007/s40995-020-00902-7

  12. Gomes, M., Kupriyanov, V.G., da Silva, A.J.: Noncommutativity due to spin. Phys. Revie. D. 81, 085024 (2010)

    Article  ADS  Google Scholar 

  13. Falomir, H., Gamboa, J., López-Sarrión, J., Méndez, F., Pisani, P.A.G.: Magnetic-dipole spin effects in noncommutative quantum mechanics. Phys. Lett. B 680, 384 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Falomir, H., Gamboa, J., Loewe, M., Méndez, F., Rojas, J.C.: Spin noncommutativity and the three-dimensional harmonic oscillator. Phys. Revie. D. 85, 025009 (2012)

    Article  ADS  Google Scholar 

  15. Hamil, B.: Dirac oscillator in a space with spin noncommutativity of coordinates. Modern Phys. Lett. A. 32, 1750176 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Ferrari, A.F., Gomes, M., Kupriyanov, V.G., Stechhahn, C.A.: Dynamics of a Dirac fermion in the presence of spin noncommutativity. Phys. Lett. B, 1(2012)

  17. Vasyuta, V.M., Tkachuk, V.M.: Classical electrodynamics in a space with spin noncommutativity of coordinates. Phys. Lette. B. 761, 462 (2016)

    Article  ADS  MATH  Google Scholar 

  18. Sadurní, E.: The Dirac-Moshinsky oscillator: theory and applications.: American Institute of Physics. 1334, 249 (2011). https://doi.org/10.1063/1.3555484

  19. Carvalho, J., Furtado, C., Moraes, F.: Dirac oscillator interacting with a topological defect. Phys. Rev. A. 48, 032109 (2011)

  20. Kemmer, N.: The particle aspect of meson theory. Proc. R. Soc. Lond. A. Math. Phys. Scie. 173, 91 (1939). https://doi.org/10.1098/rspa.1939.0131

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gönen, S., Havare, A., Unal, N.: Exact Solution of Kemmer Equation for Coulomb Potential.arXiv preprint hep-th/0207087 (2002)

  22. Sogut, K., Havare, A., Acikgoz, I.: Energy levels and wave functions of vector bosons in a homogeneous magnetic field. J. Math. Phys. 438, 3952 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Abreu, L.M., Santos, E.S., Vianna, J.D.M.: Duffin-Kemmer-Petiau theory with minimal and non-minimal couplings. J. Phys. A: Math. Theor. 43, 495402 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lunardi, J.T.: A note on the Duffin-Kemmer-Petiau equation in (1+1) space-time dimensions. J. Math. Phys. 58, 123501 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Castro, L.B., Silva, E.O.: Relativistic quantum dynamics of vector bosons in an Aharonov-Bohm potential. J. Phys. A: Math. Theor. 51, 035201 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Hosseinpour, M., Hassanabadi, H., Andrade, F.M.: The DKP oscillator with a linear interaction in the cosmic string space-time. Eur. Phys. J. C. 93, 1 (2018). https://doi.org/10.1140/epjc/s10052-018-5574-x

    Article  Google Scholar 

  27. Hamil, B., Merad, M., Birkandan, T.: Three dimensional DKP oscillator in a curved Snyder space. arXiv. 2009, 1(2020)

  28. Wu, S.-R., et al.: Effects of generalized uncertainty principle on the two-dimensional DKP oscillator. Eur. Phys. J. Plus. 132, 1 (2017)

    Article  ADS  Google Scholar 

  29. Yang, Y., Hassanabadi, H., Chen, H., Long, Z.-W.: DKP oscillator in the presence of a spinning cosmic string. Inter. J. Mode. Phys. E. 30, 2150050 (2021)

    Article  ADS  Google Scholar 

  30. Yang, Y., Cai, S.-H., Long, Z.-W., Chen, H., Long, C.-Y.: Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field. Chin. Phys. B. 29, 070302 (2020)

    Article  ADS  Google Scholar 

  31. Chen, H., Long, Z.-W., Yang, Y., Zhao, Z.-L., Long, C.-Y.: The study of the generalized boson oscillator in a chiral conical space-time. Intern. J. Mode. Phys. A. 35, 2050107 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. Zettili, N.: Quantum Mechanics Concepts and Applications. A John Wiley and Sons, Ltd., Publication. Second edition, 274 (2009)

  33. Yang, Z..-H., Long, C..-Y., Qin, S..-J., Long, Z..W.: DKP oscillator with spin-0 in three-dimensional noncommutative phase space. Int. J. Theor. Phys. 49, 644 (2010). https://doi.org/10.1007/s10773-010-0244-2

    Article  MathSciNet  MATH  Google Scholar 

  34. Gabor Szegö.: Orthogonal polynomials.American Mathematical Society Colloquium Publications. XXIII. 106 (1939)

  35. Hadj Moussa, M., Merad, H.: Relativistic Bosonic Equations with Generalized Position and Momentum Operators. Few-Body Syst. 55, 10 (2022). https://doi.org/10.1007/s00601-022-01758-w

    Article  Google Scholar 

  36. Hamil, B., Merad, M.: Dirac and Klein-Gordon oscillators on anti-de Sitter space. Eur. Phys. J. Plus. 133, 7 (2018)

    Article  ADS  MATH  Google Scholar 

  37. Bruce, S., Minning, P.: The Klein-Gordon Oscillator. IL Nuovo Cimento. 106, 712 (1993). https://doi.org/10.1007/BF02787240

    Article  Google Scholar 

  38. Rekioua, R., Boudjedaa, T.: Path integral for one-dimensional Dirac oscillator. Eur. Phys. J. C. 49, 1097 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Hun, M.A.: Relativistic quantum motion of the scalar bosons in the background space-time around a chiral cosmic string. Intern. J. Mod. Phys. A. 34, 1950056 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Gomez, I.S., Santos, E.S., Abla, O.: Splitting frequency of the (2+1)-dimensional Duffin-Kemmer-Petiau oscillator in an external magnetic field. Phys. Lett. A. 1, 2 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Wang, B.-Q., Long, Z.-W., Long, C.-Y., Wu, S.-R.: Solution of the spin-one DKP oscillator under an external magnetic field in noncommutative space with minimal length. Chin. Phys. B. 27, 010301–5 (2018)

    Article  ADS  Google Scholar 

  42. Yang, X.L., Guo, S.H., Chan, F.T.: Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory. Phys. Rev. A. 43, 1187 (1991)

    MathSciNet  Google Scholar 

  43. Dossa, F.A., Koumagnon, J.T., Hounguevou, J.V., Avossevou, G.Y.H.: Two-dimensional Dirac oscillator in a magnetic field in deformed phase space with minimal-length uncertainty relations. Theore. Mathem. Phys. 213, 1744 (2022)

    MathSciNet  MATH  Google Scholar 

  44. Benzair, H., Merad, M., Boudjedaa, T., Makhlouf, A.: Relativistic Oscillators in a Noncommutative Space: a Path Integral Approach. Zeitschrift Für Naturforschung. A. 67, 81 (2012)

    Article  ADS  Google Scholar 

  45. Ahmed, F.: Relativistic quantum dynamics of spin-0 system of the DKP oscillator in a Gödel-type space-time. Theor. Phys. 72, 025103 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Pacheco, M.H., Landim, R.R., Almeida, C.A.S.: One-dimensional Dirac oscillator in a thermal bath. Phys. Lett. A. 311, 94 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Nouicer, K.: An exact solution of the one-dimensional Dirac oscillator in the presence of minimal lengths. J. Phys. A: Math. Gen. 39, 5131 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Arakawa, T., Ibukiyama, T., Kaneko, M.: Bernoulli Numbers and Zeta Functions. Springer Monographs in Mathematics.Edition Number 1. 3733, (2003). https://doi.org/10.1007/978-4-431-54919-2

Download references

Acknowledgements

We extend our sincere appreciation to the editor and reviewers for their invaluable feedback and insightful suggestions that greatly enhanced the quality of this manuscript. I extend my sincere gratitude to the esteemed editor for the diligent efforts invested in enhancing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript represents the original work of a single author. The author, " M’hamed Hadj Moussa ", has contributed to all aspects of the research project and the development of this article. As the sole author of this article, I take full responsibility for its content and guarantee its accuracy and integrity. All relevant ethical guidelines and protocols were followed during the research process. I affirm that this article has not been published previously and is not under consideration for publication elsewhere. Please feel free to contact me should you have any questions or require further information. Sincerely, M’hamed Hadj Moussa Theoretical Physics and Radiation Matter Interactions Laboratory (LPTHIRM), Physics Department, Sciences Faculty , University of Saad Dahlab - Blida 1 , PO box 270 Soumaa Road , 09000 , Blida, Algeria.

Corresponding author

Correspondence to M’hamed Hadj Moussa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadj Moussa, M. Duffin-Kemmer-Petiau Oscillator with Spin Non-Commutativity. Int J Theor Phys 62, 218 (2023). https://doi.org/10.1007/s10773-023-05466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05466-x

Keywords

Navigation