Skip to main content
Log in

On the Propagation of Gravitational Waves in Matter-Filled Bianchi I Universe

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we apply the Regge-Wheeler formalism to study the propagation of axial and polar gravitational waves in matter-filled Bianchi I universe. Assuming that the expansion scalar \( \Theta \), of the background space-time, is proportional to the shear scalar \( \sigma \), we solved the background field equations in the presence of matter (found to behave like a stiff fluid). We then derive the linearised perturbation equations for both the axial and polar modes. The analytical solutions in vacuum spacetime could be determined in an earlier paper (Guha and Datta Int. J. Modern Phys D. 29(16), 2050116, 2020) in a relatively straightforward manner. However, here we find that in the presence of matter, they require more assumptions for their solution, and bear more involved forms. As compared to the axial modes, the polar perturbation equations contain far more complicated couplings among the perturbing terms. Thus we have to apply suitable assumptions to derive the analytical solutions for some of the cases of polar perturbations. In both the axial and polar cases, the radial and temporal solutions for the perturbations separate out as products. We find that the axial waves are damped owing to the background anisotropy, and can deform only the azimuthal velocity of the fluid. In contrast, the polar waves must trigger perturbations in the energy density, the pressure as well as in the non-azimuthal components of the fluid velocity. Similar behaviour is exhibited by axial and polar gravitational waves propagating in the Kantowski-Sachs universe (Datta and Guha. Phys. Dark Univ. 34, 100890, 2021). Our work is in contrast to the work done in Sugiyama et al. (Phys. Rev. D 103, 083503, 2021), where the authors analysed anisotropic universes modelled by Kasner spacetime and Rindler wedges using the method of gauge-invariant perturbations in the RW gauge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ellis, G.F.R., MacCallum, M.A.H.: Commun. Math. Phys. 12, 108 (1969)

    Article  ADS  Google Scholar 

  2. Bianchi, L.: Soc. Ital. Sci. Mem. Mat. 11, 267 (1898)

    Google Scholar 

  3. Jacobs, K.C.: Astrophys. J 151, 431 (1968)

    Article  Google Scholar 

  4. Hu, B.L.: Phys. Rev. D 18, 968 (1978)

    ADS  Google Scholar 

  5. Ford, L.H., Parker, L.: Phys. Rev. D 16, 1601 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cho, H.T., Speliotopoulos, A.D.: Phys. Rev. D 52, 5445–5458 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  7. Miedema, P.G., van Leeuwen, W.A.: Phys. Rev. D 47, 3151 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  8. Adams, P.J., Hellings, R.W., Zimmerman, R.L., Farhoosh, H., Levine, D.I., Zeldich, S.: Astrophys. J. 253, 1–18 (1982)

    Article  ADS  Google Scholar 

  9. Adams, P.J., Hellings, R.W., Zimmerman, R.L.: Astrophys. J. 288, 14–21 (1985)

    Article  ADS  Google Scholar 

  10. Guha, S., Datta, S.: Int. J. Modern Phys. D. 29(16), 2050116 (2020)

    Article  ADS  Google Scholar 

  11. Mondal, S., Ali, S., Shanima, S., Banerjee, N., Hossain, G.M.: Gen. Relativ. Gravit. 53, 64 (2021)

    Article  ADS  Google Scholar 

  12. Regge, T., Wheeler, J.A.: Phys. Rev. 108, 1063 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zerilli, F.J.: Phys. Rev. Lett. 24, 737 (1970)

    Article  ADS  Google Scholar 

  14. Zerilli, F.J.: Phys. Rev. D 02, 2141 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  15. Vishveshwara, C.V.: Phys. Rev. D 1, 2870 (1970)

    Article  ADS  Google Scholar 

  16. Moncrief, V.: Annals of Physics 88, 323 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  17. Seidel, E., Moore, T.: Phys. Rev. D 35, 2287 (1987); E. Seidel, E. Myra, and T. Moore, ibid. 38, 2349 (1988)

  18. Seidel, E.: Phys. Rev. D 42, 1884 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  19. Viaggiu, S.: Class. Quantum Grav. 34, 035018 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon Press, Oxford (1983)

    MATH  Google Scholar 

  21. Qi, G., Schutz, B.F.: Gen. Relativ. Gravit. 25, 1185 (1993)

    Article  ADS  Google Scholar 

  22. Anderson, J.L., Madonna, R.: Gen. Relativ. Gravit. 15, 1121 (1983)

    Article  ADS  Google Scholar 

  23. Chandrasekhar, S., Esposito, F.P.: Astrophys. J. 160, 153 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  24. Fiziev, P.P.: Class. Quantum Grav. 23, 2447 (2006)

    Article  ADS  Google Scholar 

  25. Hassanabadi, H., Zarrinkamar S., Rajabi A.A: Eur. Phys. J. Plus 128, 61 (2013)

  26. Bini, D., Esposito, G., Geralico, A.: Gen Relativ Gravit 44, 467 (2012)

    Article  ADS  Google Scholar 

  27. Malec, E., Wylezek, G.: Class. Quantum Grav. 22, 3549 (2005)

    Article  ADS  Google Scholar 

  28. Kulczycki, W., Malec, E.: Class. Quantum Grav. 34, 135014 (2017)

    Article  ADS  Google Scholar 

  29. Kulczycki, W., Malec, E.: Phys. Rev. D 96, 063523 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Sharif, M., Siddiqa, A.: Eur. Phys. J. C. 78, 721 (2018)

    Article  ADS  Google Scholar 

  31. Sharif, M., Siddiqa, A.: Gen. Relativ. Gravit. 51, 74 (2019)

    Article  ADS  Google Scholar 

  32. Salti, M.: Physics of the Dark Universe 30, 100630 (2020)

    Article  Google Scholar 

  33. Salti, M., Aydogdu, O., Kangal, E.E.: Class. Quantum Grav. 38, 025008 (2021)

    Article  ADS  Google Scholar 

  34. Sharif, M., Siddiqa, A.: Physics of the Dark Universe 15, 105 (2017)

    Article  ADS  Google Scholar 

  35. Siddiqa, A., Mehwish, S.Z.B., Alves, M.E.S.: Eur. Phys. J. Plus 136, 415 (2021)

    Article  Google Scholar 

  36. Rostworowski, A.: Phys. Rev. D 96, 124026 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. Bardeen, J.M.: Phys. Rev. D 22, 1882–1905 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  38. Rostworowski, A.: Phys. Rev. D 101, 083512 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. Sarkar A., Nayak R. K.: arXiv:2109.02185v2 [gr-qc] (2021)

  40. Lenzi, M., Sopuerta, C.F.: Phys. Rev. D 104, 084053 (2021)

    Article  ADS  Google Scholar 

  41. Manzoor, R., Siddiqa, A., Kamal, A.: Physics of the Dark Universe 35, 100958 (2022)

    Article  Google Scholar 

  42. Gundlach, C., Martin-Garcia, J.M.: Phys. Rev. D 61, 084024 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  43. Martin-Garcia, J.M., Gundlach, C.: Phys. Rev. D 59, 064031 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  44. Gerlach U.H., Sengupta U.K.: Phys. Rev. D 19, 2268 (1979); ibid 22, 1300 (1980)

  45. Martel, K., Poisson, E.: Phys. Rev. D 71, 104003 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  46. Clarkson, C., Clifton, T., February, S.: J. Cosmol. Astropart. Phys. 06, 25 (2009)

    Article  ADS  Google Scholar 

  47. February, S., Larena, J., Clarkson, C., Pollney, D.: Class. Quantum Grav. 31, 175008 (2014)

    Article  ADS  Google Scholar 

  48. Meyer, S., Bartelmann, M.: J. Cosmol. Astropart. Phys. 12, 025 (2017)

    Article  ADS  Google Scholar 

  49. Keresztes, Z., Forsberg, M., Bradley, M., Dunsby, P.K.S., Gergely, L.A.: J. Cosmol. Astropart. Phys. 2015, 042 (2015)

    Article  Google Scholar 

  50. Bradley, M., Forsberg, M., Keresztes, Z.: Universe 3, 69 (2017)

    Article  ADS  Google Scholar 

  51. Alves, M.E.S., et al.: Phys. Lett. B 679, 401 (2009)

    Article  ADS  Google Scholar 

  52. Corda, C.: Int. J. Mod. Phys. A 23, 1521 (2008)

    Article  ADS  Google Scholar 

  53. Capozziello, S., Corda, C., de Laurentis, M.F.: Phys. Lett. B 669, 255 (2008)

    Article  ADS  Google Scholar 

  54. Corda, C.: Eur. Phys. J. C 65, 257 (2010)

    Article  ADS  Google Scholar 

  55. Capozziello, S., Cianci, R., Laurentis, M., Vignolo, S.: Eur. Phys. J. C 70, 341 (2010)

    Article  ADS  Google Scholar 

  56. Alves, M.E.S., Moraes, P.H.R.S., de Araujo, J.C.N., Malheiro, M.: Phys. Rev. D 94, 024032 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  57. Myung, Y.S.: Adv. High Energy Phys. 2016, 3901734 (2016)

    Article  Google Scholar 

  58. Sharif, M., Siddiqa, A.: Astrophys. Space Sci. 362, 226 (2017)

    Article  ADS  Google Scholar 

  59. Liang, D., Gong, Y., Hou, S., Liu, Y.: Phys. Rev. D 95, 104034 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  60. Hou, S., Gong, Y., Liu, Y.: Eur. Phys. J. C 78, 378 (2018)

    Article  ADS  Google Scholar 

  61. Gong, Y., Hou, S.: Universe 4, 85 (2018)

    Article  ADS  Google Scholar 

  62. Haghshenas, M., Azizi, T.: Eur. Phys. J. Plus 136, 4 (2021)

    Article  Google Scholar 

  63. Oliveira-Costa, A., Tegmark, M., Zaldarriaga, M., Hamilton, A.: Phys. Rev. D 69, 063516 (2004)

    Article  ADS  Google Scholar 

  64. Planck collaboration, P. A. R. Ade et al.: Astron. Astrophys. 594, A16 (2016)

  65. Sugiyama, Y., Yamamoto, K., Kobayashi, T.: Phys. Rev. D 103, 083503 (2021)

    Article  ADS  Google Scholar 

  66. Datta, S., Guha, S.: Physics of the Dark Universe 34, 100890 (2021)

    Article  Google Scholar 

  67. Raychaudhuri, A.K.: Theoretical Cosmology. Clarendon Press, Oxford (1979)

    MATH  Google Scholar 

  68. Kantowski, R., Sachs, R.K.: J. Math. Phys. 7, 443 (1966)

    Article  ADS  Google Scholar 

  69. Katore, S.D., Hatkar, S.P.: Prog. Theor. Exp. Phys. 2016, 033E01 (2016)

  70. Shamir, M.F.: Astrophys. Space Sci. 330, 183 (2010)

    Article  ADS  Google Scholar 

  71. Shamir, M.F.: Eur. Phys. J. C 75, 354 (2015). arXiv:1507.08175v1 [physics.gen-ph](2015)

    Article  ADS  Google Scholar 

  72. Grøn, Ø.: Phys. Rev. D 32, 2522 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  73. Roy, S.R., Narain, S., Singh, J.P.: Aust. J. Phys. 38, 239 (1985)

    Article  ADS  Google Scholar 

  74. Roy, S.R., Banerjee, S.K.: Class. Quantum Grav. 11, 1943 (1995)

    Article  ADS  Google Scholar 

  75. Baghel, P.S., Singh, J.P.: Int. J. Theor. Phys. 51, 3664 (2012)

    Article  Google Scholar 

  76. Bali, R., Banerjee, R., Banerjee, S.K.: Astrophys. Space Sci. 317, 21 (2008)

    Article  ADS  Google Scholar 

  77. Zeld’ovich, Ya.. B.: Sov. Phys. JETP 14, 1143–7 (1962)

    Google Scholar 

  78. Wesson, P.S.: J. Math. Phys. 19, 2283 (1978)

    Article  ADS  Google Scholar 

  79. Barrow, J.D.: Nature 272, 211 (1978)

    Article  ADS  Google Scholar 

  80. Chavanis, P.-H.: Phys. Rev. D 92, 103004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  81. Bali, R., Singh, P., Singh, J.P.: ISRN Math Phys. 2012, 704612 (2012)

    Google Scholar 

  82. Banerjee, A., Duttachoudhury, S.B., Sanyal, A.K.: J. Math. Phys. 26, 3010 (1985). arXiv:2103.07342v1 [gr-qc] (2021)

    Article  ADS  MathSciNet  Google Scholar 

  83. Dutta, S., Scherrrer, R.J.: Phys. Rev. D 82, 083501 (2010)

    Article  ADS  Google Scholar 

  84. Griffiths, J.B.: Class. Quantum Grav. 10, 975 (1993)

    Article  ADS  Google Scholar 

  85. Bičák, J., Griffiths, J.B.: Phys. Rev. D 49, 900 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  86. Feinstein, A., Griffiths, J.B.: Class. Quantum Grav. 11, L109 (1994)

    Article  ADS  Google Scholar 

  87. Bičák, J., Griffiths, J.B.: Ann. Phys. 252, 180 (1996)

    Article  ADS  Google Scholar 

  88. Alekseev, G.A., Griffiths, J.B.: Phys. Rev. D 52, 4497 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  89. Rajagopalan Nair, K., Mathew, T.K.: Eur. Phys. J. C 76, 519 (2016)

    Article  Google Scholar 

  90. Rajagopalan Nair, K., Mathew, T.K.: Astrophys. Space Sci. 363, 183 (2018)

    Article  Google Scholar 

  91. Wainwright, J. Ellis, G. F. R. (eds): Dynamical Systems in Cosmology, Cambridge University Press (1997)

  92. Dergachev, V., Papa, M.A.: Phys. Rev. Lett. 125, 171101 (2020)

    Article  ADS  Google Scholar 

  93. Dergachev, V., Papa, M.A.: Phys. Rev. D 103, 063019 (2021)

    Article  ADS  Google Scholar 

  94. L. Rezzolla, Lecture notes : Gravitational Waves from Perturbed Black Holes and Relativistic Stars, Summer School on Astroparticle Physics and Cosmology, Trieste, 17 June - 5 July 2002

  95. Some calculations in this paper are done using Maple, and the rest by hand

Download references

Acknowledgements

The authors are thankful to the reviewer for the constructive suggestions. SD acknowledges the financial support from INSPIRE (AORC), DST, Govt. of India (IF180008). SG thanks IUCAA, India for an associateship and CSIR, Government of India for the major research grant [No. 03(1446)/18/EMR-II]. SC is grateful to CSIR, Government of India for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarbari Guha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, S., Guha, S. & Chakraborty, S. On the Propagation of Gravitational Waves in Matter-Filled Bianchi I Universe. Int J Theor Phys 62, 216 (2023). https://doi.org/10.1007/s10773-023-05463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05463-0

Keywords

Navigation