Skip to main content
Log in

Separability, Contextuality, and the Quantum Frame Problem

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the relationship between assumptions of state separability and both preparation and measurement contextuality, and the relationship of both of these to the frame problem, the problem of predicting what does not change in consequence of an action. We state a quantum analog of the latter and prove its undecidability. We show how contextuality is generically induced in state preparation and measurement by basis choice, thermodynamic exchange, and the imposition of a priori causal models, and how fine-tuning assumptions appear ubiquitously in settings characterized as non-contextual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This is sometimes called quantum or intrinsic contextuality to distinguish it from classical, causal, context dependence.

  2. The agents A and B are “observer-participants” in Wheeler’s sense; we argue in [43] that quantum theory is precisely the theory of interactions between such agents. From a philosophical perspective, our approach is thus a form of “participatory realism” in Cabello’s [53] sense. It differs from QBism [54] by rejecting the latter’s assumption that agents can interact specifically and exclusively with particular components of their environments.

  3. Contextuality in quantum mechanics is by now accepted as a state of affairs to be lived with. Curiously, noncontextuality seems to be an equally perplexing issue. Hofer-Szabó in [57] distinguishes between simultaneous and measurement noncontextuality as distinct, logically independent models. In the first case, an ontological (hidden variable) model is noncontextual if every ontic (hidden) state determines the probability of the outcomes of every measurement independently of whatever other measurements are simultaneously performed (otherwise the model is contextual). In the second case, an ontological model is noncontextual if any two measurements represented by the same self-adjoint operator, or equivalently, which have the same probability distribution of outcomes in every quantum state, also have the same probability distribution of outcomes in every ontic state (ditto). This distinction reflects upon the schism between operational and ontological models when dealing with contextuality, as exemplified by the fact that contextuality-by-default [21, 22] and causal contextuality [58,59,60], respectively, are different theories [61].

  4. Note that the diagram in Eq (2.1) depicts a generic blue-print for a variational autoencoder, an ubiquitous mechanism in Deep Learning [62].

  5. The classifiers \(\mathcal {A}\) appearing in Diag. (2.1) can be considered observables in context as discussed in [25, §3,§7]. As tokens/types, or as objects/attributes, for instance, each \(\mathcal {A}= (\textbf{E}, \textbf{X})\), where \(\textbf{E}\) is some “event” and \(\textbf{X}\) is a pair \(\textbf{X} = (\textbf{B}, \textbf{R})\), where \(\textbf{B}\) is a set of “conditions” or “influences”, and \(\textbf{R}\) is a set of “contexts” or “methods/detectors”. The set \(\textbf{X}\) can be seen as a basic ingredient for contextuality-by-default, but in contrast to [22, 23], our approach to a scale-free architecture does not necessitate assuming any specific connectivity in distributions, or any admissible probability classes of the random variables. It is the noncommutativity of the CCCD in [25, Th 7.1] that specifies (intrinsic) contextuality within a hierarchy of distributed information flow.

  6. It is worth pointing out that a distributed system of information flow as formulated in [52], of which CCCDs (when considered as systems of logical gates) are examples, already embodies context and causation, and is especially suited for modeling ontologies. These characteristics have been professed in [65, 66], in which the former uses the logical formulism of [52] to argue that causation itself may be viewed as a form of computation resulting from the regular relations in a distributed system (such as a CCCD), and the latter shows that for any pair of classifiers \(\mathcal {A},\mathcal B\) occurring in such a system, there exists some (logic) infomorphism between them such that \(\mathcal {A}\) directly causes \(\mathcal B\). In a companion theory of integrative information involving abstract logical structures known as Institutions (see e.g. [67,68,69]), the element of context is further emphasized within a category of signatures with associated sentences. As briefly recalled in the proof of Lemma 2.1, the basic mechanism of a QRF in conjunction with binary-valued classifiers provides a model for a generic topological quantum field theory [26] with no immediate need for further logical abstractions – ‘sentences’ in this case are basically qubit strings. On the other hand, classifiers (classifications) are important, generic 1-institutions from which other institutions can be generated [67, 69]. The ‘institutional’ approach to contextuality will be further addressed at a later date in relationship to the present development of ideas.

  7. As pointed out in [32], analogical reasoning is a case of informational unencapsulation in its extreme form.

  8. The FP was widely regarded as intractable, but nonetheless avoidable via circumscription and heuristics, since its first statement [30]; hence theoretical work on the problem was largely conducted with thought experiments that considered hypothetical autonomous robots embedded in open task environments, i.e. task environments having only a partial a priori model, e.g. [70, 71] where the robot suffers ‘Hamlet’s Problem’ of ‘over-thinking’ and not knowing when to stop. Such models are reviewed in [32] in the context of “Global Workspace” or shared memory architectures as models of massively parallel, distributed systems of possibly-adversarial processes. The semantically coherent, distributed systems of information flow developed in [52] provide a scale-free architectural model for any such generic Workspace (see e.g. [25, 72, 73]).

  9. Language sharing among human observers always involves a past common cause, and hence is an example of superdeterminism.

  10. This sense of ‘no disturbance’ has also been called ‘no-signaling’, where in relativistic accordance, such pairs of measurements XY are made in spacelike separated regions (see also e.g. [14, 103]).

References

  1. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  3. Fine, A.: Hidden variables, joint probability and the Bell inequalities. Phys. Rev. Lett. 48, 291–295 (1982)

    ADS  MathSciNet  Google Scholar 

  4. Peres, A.: Two simple proofs of the Kochen-Specker theorem. J. Phys. A: Math. Gen. 24, L175 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65, 803–815 (1993)

    ADS  MathSciNet  Google Scholar 

  6. Spekkens, R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71, 052108 (2005)

    ADS  Google Scholar 

  7. Raussendorf, R.: Contextuality in measurement-based quantum computation. Phys. Rev. A 88, 022322 (2013)

    ADS  Google Scholar 

  8. Howard, M., Wallman, J., Veitch, V., Emerson, J.: Contextuality supplies the ‘magic’ for quantum computation. Nature 510, 351–355 (2014)

    ADS  Google Scholar 

  9. Bermejo-Vega, J., Delfosse, N., Browne, D.E., Okay, C., Raussendorf, R.: Contextuality as a resource for models of quantum computation with qubits. Phys. Rev. Lett. 119, 120505 (2017)

    ADS  MathSciNet  Google Scholar 

  10. Frembs, M., Roberts, S., Bartlett, S.D.: Contextuality as a resource for measurement-based quantum computation beyond qubits. New J. Phys. 20, 103011 (2018)

    ADS  Google Scholar 

  11. Mansfield, S., Kashefi, E.: Quantum advantage from sequential-transformation contextuality. Phys. Rev. Lett. 121, 230401 (2018)

    ADS  Google Scholar 

  12. Amaral, B.: Resource theory of contextuality. Phil. Trans. R. Soc. A 377, 2019.0010 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and contextuality. New J. Phys. 13, 113036 (2011)

    ADS  MATH  Google Scholar 

  14. Abramsky, S., Brandenburger, A.: An operational interpretation of negative probabilities and no-signaling models. In van Bruegel, F. et al., eds, Panangaden Festschrift (Lecture Notes in Computer Science 8464) Springer, Switzerland, pp. 59–74 (2014)

  15. Abramsky, S., Barbosa, R.S., Mansfield, S.: Contextual fraction as a measure of contextuality. Phys. Rev. Lett. 119, 050504 (2017)

    ADS  Google Scholar 

  16. Abramsky, S.: Contextuality: At the Borders of Paradox. In E. Landry, ed., Categories for the Working Philosopher, Oxford (2017) online edn, Oxford Academic, https://doi.org/10.1093/oso/9780198748991.003.0011

  17. Cabello, A., Severini, S., Winter, A.: Graph-Theoretic Approach to Quantum Correlations. Phys. Rev. Lett. 112, 040401 (2014)

    ADS  Google Scholar 

  18. Cabello, A., Kleinmann, M., Budroni, C.: Necessary and Sufficient Condition for Quantum State-Independent Contextuality. Phys. Rev. Lett. 114, 250402 (2015)

    ADS  Google Scholar 

  19. Cabello, A.: Simple method for experimentally testing any form of quantum contextuality. Phys. Rev. A 93, 032102 (2016)

    ADS  Google Scholar 

  20. Cabello, A.: Converting Contextuality into Nonlocality. Phys. Rev. Lett. 127, 070401 (2021)

    ADS  MathSciNet  Google Scholar 

  21. Dzhafarov, E.N., Kujala, J.V.: Contextuality-by-Default 2.0: Systems with binary random variables. In: Barros, J.A., Coecke, B., Pothos, E. (eds.) Lecture Notes in Computer Science 10106, pp. 16–32. Springer, Berlin (2017)

    Google Scholar 

  22. Dzhafarov, E.N., Cervantes, V.H., Kujala, J.V.: Contextuality in canonical systems of random variables. Phil. Trans. R. Soc. A 375, 20160389 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Dzharfarov, E.N., Kon, M.: On universality of classical probability with contextually labeled random varaibles. J. Math. Psychol. 85, 17–24 (2018)

    Google Scholar 

  24. Gudder, S.: Contexts in quantum measurement theory. Found. Phys. 49, 647–662 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Fields, C., Glazebrook, J.F.: Information flow in context-dependent hierarchical Bayesian inference. J. Expt. Theor. Artif. Intell. 34, 111–142 (2022)

    Google Scholar 

  26. Fields, C., Glazebrook, J.F., Marcianò, A.: Sequential measurements, topological quantum field theories, and topological quantum neural networks. Fortschr. Phys. 70, 2200104 (2022)

    MathSciNet  Google Scholar 

  27. Popescu, S.: Non-locality beyond quantum mechanics. Nature Phys. 10, 264–270 (2014)

    Google Scholar 

  28. Adlam, E.: Contextuality, fine-tuning and teleological explanation. Found. Phys. 51, 106 (2021). https://doi.org/10.1007/s10701-021-00516-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. McCarthy, J., Hayes, P. J.: Some philosophical problems from the standpoint of artificial intelligence. In: Michie, D. and Meltzer, B., dds., Machine Intelligence, Vol. 4. Edinburgh: Edinburgh University Press, pp. 463–502 (1969)

  30. Dietrich, E., Fields, C.: The role of the frame problem in Fodor’s modularity thesis: A case study of rationalist cognitive science. In: Ford, K.M., Pylyshyn, Z.W. (eds.) The Robot’s Dilemma Revisited, pp. 9–24. Ablex, Norwood, NJ (1996)

    Google Scholar 

  31. Nakashima, H., Matsubara, H., Osawa, I.: Causality is the key to the frame problem. Artif. Intell. 91, 33–50 (1997)

    MATH  Google Scholar 

  32. Shanahan, M., Baars, B.: Applying global workspace theory to the frame problem. Cognition 98, 157–176 (2005)

    Google Scholar 

  33. Fields, C.: How humans solve the frame problem. J. Expt. Theor. Artif. Intell. 25, 441–456 (2013)

    Google Scholar 

  34. Shanahan, M.: The frame problem. Stanford Encyclopedia of Philosophy, 2016 retrieved from http://plato.stanford.edu/entries/frameproblem/, Accessed 17-Oct.-2019

  35. Dietrich, E., Fields, C.: Equivalence of the Frame and Halting problems. Algorithms 13, 175 (2020)

    MathSciNet  Google Scholar 

  36. Pegg, D., Barnett, S., Jeffers, J.: Quantum theory of preparation and measurement. J. Mod. Optics 49, 913–924 (2010)

    ADS  MathSciNet  Google Scholar 

  37. Aharonov, Y., Kaufherr, T.: Quantum frames of reference. Phys. Rev. D 30, 368–385 (1984)

    ADS  MathSciNet  Google Scholar 

  38. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555–609 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Fields, C., Glazebrook, J.F.: Representing measurement as a thermodynamic symmetry breaking. Symmetry 12, 810 (2020)

    ADS  Google Scholar 

  40. Addazi, A., Chen, P., Fabrocini, F., Fields, C., Greco, E., Lulli, M., Marcianò, A., Pasechnik, R.: Generalized holographic principle, gauge invariance and the emergence of gravity à la Wilczek. Front. Astron. Space Sci. 8, 563450 (2021)

    Google Scholar 

  41. Fields, C., Glazebrook, J.F., Marcianò, A.: Reference frame induced symmetry breaking on holographic screens. Symmetry 13, 408 (2021)

    ADS  Google Scholar 

  42. Fields, C., Friston, K., Glazebrook, J.F., Levin, M.: A free energy principle for generic quantum systems. Prog. Biophys. Mol. Biol. 173, 36–59 (2022)

    Google Scholar 

  43. Fields, C., Glazebrook, J.F., Marcianò, A.: The physical meaning of the holographic principle. Quanta 11, 72–96 (2022)

    MATH  Google Scholar 

  44. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  45. Wheeler, J.A.: Information, physics, quantum: The search for links. In: Zurek, W. (ed.) Complexity, Entropy, and the Physics of Information, pp. 3–28. CRC Press, Boca Raton, FL (1989)

    Google Scholar 

  46. Friston, K.J., FitzGerald, T., Rigoli, F., Schwartenbeck, P., Pezzulo, G.: Active inference: a process theory. Neural Comput. 29, 1–49 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Friston, K.J.: A free energy principle for a particular physics (2019). [q- bio.NC]. http://arxiv.org/abs/1906.10184

  48. Ramstead, M. J., Sakthivadivel, D. A. R., Heins, C., Koudahl, M., Millidge, B., Da Costa, L., Klein, B., Friston, K. J.: On Bayesian mechanics: A physics of and by beliefs. R. Soc. Interface Focus 13, 2022.0029 (2023). [cond-mat.stat-mech]. http://arxiv.org/abs/2205.11543

  49. Fields, C., Fabrocini, F., Friston, K., Glazebrook, J.F., Hazan, H., Levin, L., Marcianò, A.: Control flow in active inference systems, Part I: Formulations of classical and quantum active inference. IEEE Trans. Mol. Biol. Multi-Scale Commun. (2023). https://doi.org/10.1109/TMBMC.2023.3272150

    Article  Google Scholar 

  50. Fields, C., Fabrocini, F., Friston, K., Glazebrook, J.F., Hazan, H., Levin, L., Marcianò, A.: Control flow in active inference systems, Part II: Tensor networks as general methods of control flow. IEEE Trans. Mol. Biol. Multi-Scale Commun. (2023). https://doi.org/10.1109/TMBMC.2023.3272158

    Article  Google Scholar 

  51. Fields, C., Glazebrook, J.F.: A mosaic of Chu spaces and Channel Theory I: Category-theoretic concepts and tools. J. Expt. Theor. Artif. Intell. 31, 177–213 (2019)

    Google Scholar 

  52. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems (Cambridge Tracts in Theoretical Computer Science, 44). Cambridge University Press, Cambridge, UK (1997)

    MATH  Google Scholar 

  53. Cabello, A.: Interpretations of quantum theory: A map of madness. In: Lombardi, O., Fortin, S., Holik, F., López, C. (eds.) What is Quantum Information?, pp. 138–144. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  54. Fuchs, C. A.: QBism, the perimeter of quantum Bayesianism. http://arxiv.org/abs/1003.5209. (2010)

  55. Fields, C., Glazebrook, J. F., Marcianò, A.: Communication protocols and quantum error-correcting codes from the perspective of topological quantum field theory. Preprint  [hep-th]. http://arxiv.org/abs/2303.16461. (2023)

  56. Gödel, K.: Über formal unentscheidbare sätze der Principia Mathematica und verwandter systeme, I. Monatsh. Math. Phys. 38(1), 173–198 (1931)

    MathSciNet  MATH  Google Scholar 

  57. Hofer-Szabó, G.: Two concepts of noncontextuality in quantum mechanics. Stud. Hist. Phil. Sci. 93, 21–29 (2022)

    MathSciNet  Google Scholar 

  58. Cavalcanti, E.G.: Classical causal models for Bell and Kochen-Specker inequality violations require fine-tuning. Phys. Rev. X 8(2), 021018 (2018)

    MathSciNet  Google Scholar 

  59. Gogioso, S., Pinzani, N.: The geometry of causality. [quant-ph]. http://arxiv.org/abs/2303.09017v1. (2023)

  60. Gogioso, S., Pinzani, N.: The topology of causality. [quant-ph]. http://arxiv.org/abs/2303.07148v1. (2023)

  61. Hofer-Szabó, G.: Causal contextuality and contextuality-by-default are different topics. J. Math. Psych. 104, 102590 (2021)

    MathSciNet  MATH  Google Scholar 

  62. Kingma, D.P., Welling, M.: An Introduction to variational autoencoders. Found. Trends Mach. Learn. 12(4), 307–392 (2019)

    MATH  Google Scholar 

  63. Wootters, W.K.: Entanglement of formation and concurrence. Quant. Inform. Comp. 1, 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  64. Seigal, A., Harrington, H.A., Nanda, V.: Principal components along quiver representations. Found. Comput. Math. https://doi.org/10.1007/s10208-022-09563-x. (2022). 

  65. Collier, J.: Information, causation and computation. In: Crnkovic, G.D., Burgin, M. (eds.) Information and Computation: Essays on Scientific and Philosophical Foundations of Information and Computation (World Scientific Series in Information Studies Vol 2), pp. 89–105. World Scientific Press, Hackensack, NJ (2011)

    Google Scholar 

  66. Seligman, J.: Channels: From logic to probability. In: Sommaruga, G., Ed., Formal Theories of Information (Lecture Notes in Computer Science 5363) Berlin: Springer, pp. 193–233 (2009)

  67. Goguen, J.: Information integration in Institutions. Proposed for: Moss, L., Ed., Thinking Logically: A Memorial Volume for Jon Barwise. Bloomington IN: Indiana University Press. https://cseweb.ucsd.edu/%7egoguen/pps/ifi04.pdf. (2005). 

  68. Goguen, J.: Three perspectives on information integration. Dagstuhl Seminar Proceeding 04391. Semantic Operability and Integration. https://drops.dagstuhl.de/opus/volltexte/2005/38. (2005). 

  69. Kent, R. E.: Semantic integration in the information flow framework. [cs.LO]. http://arxiv.org/abs/1810.08236v1. (2018)

  70. Fodor, J.A.: The Modularity of Mind. MIT Press, Cambridge MA (1983)

    Google Scholar 

  71. Dennett, D.: Cognitive wheels: The frame problem in artificial inteeligence. In: Hookway, C. (ed.) Minds, pp. 129–151. Machines and Evolution. Cambridge Univ. Press, Cambridge UK (1984)

    Google Scholar 

  72. Fields, C., Glazebrook, J.F.: Do Process-1 simulations generate the epistemic feelings that drive Process-2 decision making? Cogn. Proc. 21, 533–553 (2020)

    Google Scholar 

  73. Fields, C., Glazebrook, J.F.: A mosaic of Chu spaces and Channel Theory II: Applications to object identification and mereological complexity. J. Expt. Theor. Artif. Intell. 31, 237–265 (2019)

    Google Scholar 

  74. Turing, A.: On computable numbers, with an application to the Entscheidungsproble. Proc. London Math. Soc. (Ser. 2) 42, 230–265 (1937)

  75. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Boston, MA (1979)

    MATH  Google Scholar 

  76. Griffiths, R.B.: Quantum measurements and contextuality. Phil. Trans. R. Soc. A 377, 20190033 (2019)

    ADS  MATH  Google Scholar 

  77. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)

    ADS  Google Scholar 

  78. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequaties using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    ADS  MathSciNet  Google Scholar 

  79. Aspect, A.: Bell’s inequality test. Nature 398, 189–190 (1999)

    ADS  Google Scholar 

  80. Bartosik, H., Klepp, J., Schmitzer, C., Sponar, S., Cabello, A., Rauch, H., Hasegawa, Y.: Experimental test of quantum contextuality in neutron interferometry. Phys. Rev. Lett. 103, 040403 (2009)

    ADS  Google Scholar 

  81. Hensen, B., et al.: Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

    ADS  Google Scholar 

  82. Georgescu, I.: How the Bell tests changed quantum physics. Nature Phys. 3, 374–376 (2021)

    Google Scholar 

  83. Tipler, F.: Quantum nonlocality does not exist. Proc. Natl. Acad. Sci. USA 111, 11281–11286 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  84. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580–590 (1928)

    ADS  MATH  Google Scholar 

  85. Mermin, N.D.: Making better sense of quantum mechanics. Rep. Prog. Phys. 82, 012002 (2018)

    ADS  MathSciNet  Google Scholar 

  86. Shrapnel, S.: Discovering quantum causal models. Brit. J. Phil. Sci. 70, 1–25 (2019)

    MathSciNet  MATH  Google Scholar 

  87. Wood, C.J., Spekkens, R.W.: The lesson of causal discovery algorithms for quantum correlations: causal explanation of Bell-inequality violations require fine-tuning. New J. Phys. 17, 033002 (2015)

    ADS  MATH  Google Scholar 

  88. Zanardi, P.: Virtual quantum subsystems. Phys. Rev. Lett. 87, 077901 (2001)

    ADS  Google Scholar 

  89. Zanardi, P., Lidar, D.A.: Lloyd, S: Quantum tensor product structures are observable-induced. Phys. Rev. Lett. 92, 060402 (2004)

    ADS  Google Scholar 

  90. de la Torre, A.C., Goyeneche, D., Leitao, L.: Entanglement for all quantum states. Eur. J. Phys. 31, 325 (2010)

    MathSciNet  MATH  Google Scholar 

  91. Harshman, N.L., Ranade, K.S.: Observables can be tailored to change the entanglement of any pure state. Phys. Rev. A 84, 012303 (2011)

    ADS  Google Scholar 

  92. Thirring, W., Bertlmann, R.A., Köhler, P., Narnhofer, H.: Entanglement or separability: The choice of how to factorize the algebra of a density matrix. Eur. Phys. J. D. 64, 181 (2011)

    ADS  Google Scholar 

  93. Barnes, L. A.: The fine-tuning of the universe for life. In E. Knox and A. Wilson (Eds.), The Routledge Companion to Philosophy of Physics, Routledge, pp. 719–730 (2022)

  94. Frankel, M.: Fine Tuning. MA, FQXi, Cambridge (2022)

    Google Scholar 

  95. Parrondo, J.M.R., Horowitz, J.M., Sagawa, T.: Thermodynamics of information. Nature Phys. 11, 131–139 (2015)

    ADS  Google Scholar 

  96. Frisch, M.: Causal Reasoning in Physics. Cambridge Univ. Press, New York NY (2014)

    Google Scholar 

  97. Tononi, G., Sporns, O.: Measuring information integration. BMC Neurosci. 4, 31 (2003)

    Google Scholar 

  98. Hoel, E.P., Albantakis, L., Tononi, G.: Quantifying causal emergence shows that macro can beat micro. Proc. Natl. Acad. Sci. USA 110, 19790–19795 (2013)

    ADS  Google Scholar 

  99. Hoel, E.P.: When the map is better than the territory. Entropy 19, 188 (2017)

    ADS  Google Scholar 

  100. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2006)

    MATH  Google Scholar 

  101. Geiger, D., Pearl, J.: On the logic of causal models. Mach. Intell. Pattern Recog. 9, 3–14 (1990)

    MathSciNet  Google Scholar 

  102. Pearl, J.: Causality. Cambridge Univ. Press, Cambridge UK (2009)

    MATH  Google Scholar 

  103. Frembs, M., Döring, A.: No-signalling, contextuality and the arrow of time. [quant-ph]. http://arxiv.org/abs/1910.09596v1. (2019)

  104. Guyon, I., Elisseeff, A.: An introdution to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  105. Guyon, I., Aliferis, C., Elisseeff, A.: Causal feature selection. In H. Liu, H. Motoda, eds., Computational Methods of Feature Selection. CRC Press, Boca Raton, FL, Ch 4, 63–85 (2007)

  106. Pellet, J.-P., Elisseeff, A.: Using Markov blankets for causal structure learning. J. Mach. Learn. Res. 9, 1295–1342 (2008)

    MathSciNet  MATH  Google Scholar 

  107. Guo, X., et al.: Error-aware Markov blanket learning for causal feature selection. Inform. Sci. 589, 849–877 (2022)

    Google Scholar 

  108. Aliferis, C.F., Tsamardinos, I., Statnikov, A.: HITON: A novel Markov Blanket algorithm for optimal variable selection. AMIA Annu. Symp. Proc. 2003, 21–25 (2003)

    Google Scholar 

  109. Koller, D., Sahami, M.: Toward optimal feature selection. In Proccedings of International Conference on Machine Learning, Bari, Italy, July 1996, Morgan Kaufmann, San Francisco CA, pp. 284–292 (1996)

  110. Wheeler, J. A.: Law without law, in Wheeler, J.A., Zurek, W.H., Eds., Quantum Theory and Measurement, Princeton University Press: Princeton, NJ, USA, pp. 182–213 (1983)

Download references

Acknowledgements

We thank Eric Dietrich and Antonino Marcianò for prior discussions on the frame problem and contextuality, respectively. We also thank a referee for careful reading of this paper, constructive criticism, and recommendations

Funding

This work received no external funding

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Fields.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest involved in this work

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fields, C., Glazebrook, J.F. Separability, Contextuality, and the Quantum Frame Problem. Int J Theor Phys 62, 159 (2023). https://doi.org/10.1007/s10773-023-05406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05406-9

Keywords

Navigation