Skip to main content
Log in

A Secure Centralized Multi-Party Quantum Key Distribution Protocol with New Encoding Mode

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a secure centralized multi-party quantum key distribution protocol based on four-particle GHZ state. Unlike centralized group session key generated by the third party, this paper uses an election algorithm to select initial participants, and the initial participants generate fairer centralized group session key, reducing dependence on the third party. Using the quantum resource GHZ state combined with unitary operations, a new encoding mode is used to quickly realize multi-party quantum key distribution, and the proposed protocol has lower time complexity. Theoretically, multi-particle GHZ state can be scaled for faster multi-party quantum key distribution. In addition, analysis and comparison show that the proposed protocol can resist common attacks and has feasible efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Diffie, W., Hellman, M.: New directions in cryptography[J]. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems[J]. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik[M]. Z. Phys. 43, 172–198 (1927)

    Article  ADS  MATH  Google Scholar 

  4. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned[J]. Nature 299(5886), 802–803 (1982)

    Article  ADS  MATH  Google Scholar 

  5. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring[C]. Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE. 124–134 (1994)

  6. Wang, J.-X., Liu, N., Wang, C., et al.: Multi-party Quantum Key Distribution Protocol Without Information Leakage[J]. Int. J. Theor. Phys. 58(8), 2654–3266 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, C.-W., Hwang, T.: Fault tolerant quantum key distributions using entanglement swapping of GHZ states over collective-noise channels[J]. Quantum Inf. Process. 12(10), 3207–3222 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Wang, D.-J.: Research on multi-party quantum key distribution technology based on multi-particle entanglement[D]. Xi'an University of Electronic Science and Technology. (2015)

  9. Wang, X.-B., Zong-Wen, Yu., Xiao-Long, Hu.: Twin-field quantum key distribution with large misalignment error[J]. Phys. Rev. A 98(6), 062323 (2018)

    Article  ADS  Google Scholar 

  10. Liu, B., Gao, Z.-F., Xiao, Di., et al.: Quantum identity authentication in the orthogonal-state-encoding QKD system[J]. Quantum Inf. Process. 18(5), 137 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ma, X.-Y., Wang, C.-N., Li, Z.-X., et al.: Multi-party quantum key distribution protocol with new bell states encoding mode [J]. Int. J. Theor. Phys. 60(4), 1328–1338 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, J.-P., Zhang, C., Liu, Y., et al.: Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km[J]. Phys. Rev. Lett. 124(7), 070501 (2020)

    Article  ADS  Google Scholar 

  13. Yin, J., Cao, Y., Li, Y.-H., et al.: Satellite based entanglement distribution over 1200 kilometers[J]. Science 356(6343), 1140–1144 (2017)

    Article  Google Scholar 

  14. Liao, S.-K., Cai, W.-Q., Handsteiner, J., et al.: Satellite-Relayed Intercontinental Quantum Network[J]. Phys. Rev. Lett. 120(3), 030501 (2018)

    Article  ADS  Google Scholar 

  15. Cao, Y., Li, Y.-H., Yang, K.-X., et al.: Long-Distance Free-Space Measurement-Device-Independent Quantum Key Distribution[J]. Phys. Rev. Lett. 125(26), 260503 (2020)

    Article  ADS  Google Scholar 

  16. Xu-Dong, Wu., Zhou, L., Zhong, W., et al.: High-capacity measurement-device-independent quantum secure direct communication[J]. Quantum Inf. Process. 19(10), 354 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Yin-Ju, Lu.: A Novel Practical Quantum Secure Direct Communication Protocol[J]. Int. J. Theor. Phys. 60(3), 1159–1163 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, Z.-M., Rong, Z.-B., Zou, X.-F., et al.: Semi-quantum secure direct communication in the curved spacetime[J]. Quantum Inf. Process. 20(11), 375 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Wang, P., Chen, X.-H., Sun, Z.-W.: Semi-quantum secure direct communication against collective-dephasing noise[J]. Quantum Inf. Process. 21(10), 352 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yang, Y.-F., Duan, L.-Z., Qiu, T.-R., et al.: Controlled Quantum Secure Direct Communication with Authentication Based on Quantum Search Algorithm[J]. Int. J. Theor. Phys. 61(7), 184 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, C.-W., Tsai, C.-W.: Efficient and secure dynamic quantum secret sharing protocol based on bell states [J]. Quantum Inf. Process. 19(5), 162 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Wang, T.-Y., Wang, X.-X., Cai, X.-Q., et al.: Analysis of efficient and secure dynamic quantum secret sharing protocol based on Bell states[J]. Quantum Inf. Process. 20(1), 7 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Jiang, S.-H., Liu, Z.-H., Lou, X., et al.: Efficient Verifiable Quantum Secret Sharing Schemes via Eight-Quantum-Entangled States[J]. Int. J. Theor. Phys. 60(5), 1757–1766 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, F.-L., Yan, J.-Y., Zhu, S.-X.: General quantum secret sharing scheme based on two qubits[J]. Quantum Inf. Process. 20(10), 328 (2021)

    Article  ADS  MATH  Google Scholar 

  25. Zheng, T., Chang, Y., Zhang, S.-B.: Arbitrated quantum signature scheme with quantum teleportation by using two three-qubit GHZ states[J]. Quantum Inf. Process. 19(5), 163 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Verma, V.: Improved Quantum Teleportation of Ten-Qubit State Based on the Cluster State Quantum Channel[J]. Int. J. Theor. Phys. 60(1), 397–401 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing[C]. Proceedings of the International Conference on Computers, Systems and Signal Processing. 175–179 (1984)

  28. Li, Z.-H., SuhailZubairy, M., Al-Amri, M.: Quantum secure group communicationj. Sci Rep 8(1), 1–8 (2018)

    Google Scholar 

  29. Aluvalu, R., Chennam, K.K., Uma Maheswari V., et al.: A Novel and Secure Approach for Quantum Key Distribution in a Cloud Computing Environment[M]. Intelligent Computing and Networking. Springer, Singapore. 271–283 (2021)

  30. Cabello, A.: Quantum key distribution in the Holevo limt [J]. Phys. Rev. Lett. 85(26), 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chongqing Municipal Education Commission Science and Technology Research Program Youth Projects (Grant No. KJQN202202401).

Author information

Authors and Affiliations

Authors

Contributions

Chao-nan Wang and Hong-feng Zhu contribute to the research idea; Chao-nan Wang have made significant contributions to the analysis and manuscript preparation; Chao-nan Wang conduct data analysis and write manuscripts; Hong-feng Zhu helped with the analysis through constructive discussions;

Corresponding author

Correspondence to Hongfeng Zhu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhu, H. A Secure Centralized Multi-Party Quantum Key Distribution Protocol with New Encoding Mode. Int J Theor Phys 62, 128 (2023). https://doi.org/10.1007/s10773-023-05398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05398-6

Keywords

Navigation