Skip to main content
Log in

Efficient Verifiable Quantum Secret Sharing Schemes via Eight-Quantum-Entangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum secret sharing (QSS) protocols are designed to allow a secret message to be divided into several shadows, and the secret can be reconstructed cooperatively. Motivated by the eight quantum entangled (EQE) state, a tripartite verifiable QSS scheme is proposed. It involves three agents, in four phases, i.e., shadow distribution phase, eavesdropping detection phase, measurement and secret sharing phase, verification and secret recover phase. The protocol can not only share and recover the secret correctly, but also verify whether there are dishonest participants in communication. In addition, the protocol is extended to a multiparty quantum secret sharing scheme by utilizing the unitary operations. Security analysis shows that the proposed schemes achieve the fundamental security requirements against the external and internal attackers with the aid of the quantum decoy states. It is shown that the efficiency in classical and quantum transmission is higher than the other protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys[C]. In: 1979 International Workshop on Managing Requirements Knowledge (MARK), pp 313–318. IEEE (1979)

  3. Cirac, J.I., Pellizzari, T., Zoller, P.: Enforcing coherent evolution in dissipative in quantum dynamics. Science 273(5279), 1207–1210 (1996)

    Article  ADS  Google Scholar 

  4. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. R. Soc. Lond. A. 400(1818), 97–117 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  5. Vandersypen, L.M.K., Steffen, M., Breyta, G., et al.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414(6866), 883–887 (2001)

    Article  ADS  Google Scholar 

  6. Hillery, M., Buźek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59(3), 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  7. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  ADS  Google Scholar 

  8. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Rev. A. 310(4), 247–251 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  10. Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A. 72(1), 012304 (2005)

    Article  ADS  Google Scholar 

  11. Xiang, Y., Mo, Z.W.: Quantum secret sharing protocol based on four-dimensional three-particle entangled states. Mod. Phys. Lett. B. 30(02), 1550267 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  12. Chen, X.B., Dou, Z., Xu, G., et al.: A kind of universal quantum secret sharing protocol. Sci. Rep. 7, 39845 (2017)

    Article  ADS  Google Scholar 

  13. Liu, J., Liu, Y.M., Zhang, Z. J., et. al.: GeneRaliZeD multiparty quantum single-qutrit-state sharing. Int. J. Theor. Phys. 47(9), 2353–2362 (2008)

    Article  MathSciNet  Google Scholar 

  14. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A. 78(6), 062333 (2008)

    Article  ADS  Google Scholar 

  15. Khakbiz, P., Asoudeh, M.: Sequential quantum secret sharing in noisy environments. Quantum. Inf. Process. 18(1), 1–19 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  16. Qin, H., Tso, R.: Efficient quantum secret sharing based on special multi-dimensional GHZ state. Opt. Quantum. Electron. 50(4), 1–10 (2018)

    Article  Google Scholar 

  17. Ye, C.Q., Ye, T.Y.: Circular semi-quantum secret sharing using single particles. Commun. Theor. Phys. 70(6), 661 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  18. Lai, H., Pieprzyk, J., Luo, M.X., et. al.: High-capacity (2,3) threshold quantum secret sharing based on asymmetric quantum lossy channels. Quantum Inf. Process. 19(5), 1–13 (2020)

    Article  MathSciNet  Google Scholar 

  19. Lee, S.M., Lee, S.W., Jeong, H., et. al.: Quantum teleportation of shared quantum secret. Phys. Rev. Lett. 124(6), 060501 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  20. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A. 77(3), 032321 (2008)

    Article  ADS  Google Scholar 

  21. Ray, M., Chatterjee, S., Chakrabarty, I.: Sequential quantum secret sharing in a noisy environment aided with weak measurements. Eur. Phys. J. D 70(5), 114 (2016)

    Article  ADS  Google Scholar 

  22. Yu, Y.: Comment on ”Generalized Smolin states and their properties” Phys. Rev. A. 75(6), 066301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  23. Lin, S., Gao, F., Guo, F.Z., et. al.: Comment on ”Multiparty quantum secret sharing of classical messages based on entanglement swapping” Phys. Rev. A. 76(3), 036301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  24. Chor, B., Goldwasser, S., Micali, S., et al.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: Proceedings of 26th IEEE Symposium on Foundations of Computer Science, pp 383–395 (1985)

  25. Yang, Y.G., Teng, Y.W., Chai, H.P., et. al.: Verifiable quantum (k, n)-threshold secret key sharing. Int. J. Theor. Phys. 50(3), 792–798 (2011)

    Article  MathSciNet  Google Scholar 

  26. Lu, C., Miao, F., Hou, J., et. al.: Verifiable threshold quantum secret sharing with sequential communication. Quantum. Inf. Process. 17(11), 310 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  27. Cai, X., Wang, T., Zhang, R., et al.: Security of verifiable threshold quantum secret sharing with sequential communication. IEEE. Access. 7, 134854–134861 (2019)

    Article  Google Scholar 

  28. Song, Y., Li, Y., Wang, W.: Multiparty quantum direct secret sharing of classical information with bell states and bell measurements. Int. J. Theor. Phys. 57(5), 1559–1571 (2018)

    Article  Google Scholar 

  29. Cao, W.F., Yang, Y.G.: Verifiable quantum secret sharing protocols based on four-qubit entangled states. Int. J. Theor. Phys. 58(4), 1202–1214 (2019)

    Article  MathSciNet  Google Scholar 

  30. Sadeghi Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-qubit state by using eight-qubit entangled state as a quantum channel. Int. J. Theor. Phys. 56(7), 2101–2112 (2017)

    Article  MathSciNet  Google Scholar 

  31. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61602172, 61972418), Natural Science Foundation of Hunan Province (2017JJ3223, 2020JJ4750), the Training Program for Excellent Young Innovators of Changsha (Grant Nos. kq1905058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Lou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Liu, Z., Lou, X. et al. Efficient Verifiable Quantum Secret Sharing Schemes via Eight-Quantum-Entangled States. Int J Theor Phys 60, 1757–1766 (2021). https://doi.org/10.1007/s10773-021-04796-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04796-y

Keywords

Navigation