Skip to main content
Log in

Solutions of Noncommutative Two-Dimensional Position–Dependent Mass Dirac Equation in the Presence of Rashba Spin-Orbit Interaction by Using the Nikiforov–Uvarov Method

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the combined effects of both position-dependent mass (PDM) and Rashba spin-orbit interaction (RSOI) on the Dirac equation of a spin 1/2 particle moving in a plane and in the presence of a magnetic field within noncommutative (NC) phase-space. The eigenvalues of the two-dimensional system are calculated and the corresponding eigenstates are obtained. The model is solved using NU method then some numerical results are given and used to extensively investigate the behavior of the system under the various influences of linear potential (involved in PDM), magnetic field and RSOI in both commutative and NC frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shen, S.Q.: Spin Hall effect and Berry phase in two-dimensional electron gas. Phys. Rev. B 70(8),(2004). https://doi.org/10.1103/PhysRevB.70.081311

  2. Haouam, I., Alavi, S.A.: Dynamical noncommutative graphene. Int. J. Mod. Phys. A 37(10), 2250054 (2022). https://doi.org/10.1142/S0217751X22500543

    Article  ADS  MathSciNet  Google Scholar 

  3. Arjona, V., Castro, E.V., Vozmediano, M.A.H.: Collapse of Landau levels in Weyl semimetals. Phys. Rev. B 96, 081110 (R) (2017). https://doi.org/10.1103/PhysRevB.96.081110

  4. Shanmugam, V., et al.: A review of the synthesis, properties, and applications of 2D materials. Part. Part. Syst. Charact. 39(6), 2200031 (2022). https://doi.org/10.1002/ppsc.202200031

    Article  Google Scholar 

  5. Choi, W., et al.: Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116 (2017). https://doi.org/10.1016/j.mattod.2016.10.002

    Article  MathSciNet  Google Scholar 

  6. Luo, M., et al.: 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 29(13), 1808306 (2019). https://doi.org/10.1002/adfm.201808306

    Article  Google Scholar 

  7. Zhang, K., et al.: Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5(46), 11992 (2017). https://doi.org/10.1039/C7TC04300G

    Article  Google Scholar 

  8. Fakhri, H., Sayyah-Fard, M.: The Jaynes-Cummings model of a two-level atom in a single-mode para-Bose cavity field. Sci. Rep. 11, 22861 (2021). https://doi.org/10.1038/s41598-021-02150-0

    Article  ADS  MATH  Google Scholar 

  9. Haouam, I.: Dirac oscillator in dynamical noncommutative space. Acta. Polytech. 61(6), 689 (2021). https://doi.org/10.14311/AP.2021.61.0689

  10. Sek, L., Falek, M., Moumni, M.: 2D relativistic oscillators with a uniform magnetic feld in anti-de Sitter space. Int. J. Mod. Phys. A 36(17), 2150113 (2021). https://doi.org/10.1142/S0217751X2150113X

  11. Hatzinikitas, A., Smyrnakis, I.: The noncommutative harmonic oscillator in more than one dimension. J. Math. Phys. 43, 113 (2002). https://doi.org/10.1063/1.141619620

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Santos, E.S., de Melo, G.R.: The Schrödinger and pauli-dirac oscillators in noncommutative phase space. Int. J. Theor. Phys. 50, 332 (2011). https://doi.org/10.1007/s10773-010-0529-5

    Article  MATH  Google Scholar 

  13. Jian-Hua, W.A.N.G., Kang, L.I., Sayipjamal, D.: Klein-Gordon oscillators in noncommutative phase space. Chin. Phys. C 32(10), 803 (2008). https://doi.org/10.1088/1674-1137/32/10/007

    Article  Google Scholar 

  14. Gervais, J.L., Neveu, A.: Oscillator representations of the 2D-conformal algebra. Commun. Math. Phys. 100, 15 (1985). https://doi.org/10.1007/BF01212685

    Article  ADS  Google Scholar 

  15. Atakishiyev, N.M., et al.: Finite two-dimensional oscillator: I. The Cartesian model. J. Phys. A: Math. Gen. 34(44), 9381 (2001). https://doi.org/10.1088/0305-4470/34/44/304

  16. Dudarev, A.M., et al.: Spin-orbit coupling and berry phase with ultracold atoms in 2d optical lattices. Phys. Rev. Lett. 92(15),(2004). https://doi.org/10.1103/PhysRevLett.92.153005

  17. Zhang, Y., et al.: Experimental observation of the quantum Hall efect and Berry’s phase in graphene. Nature 438, 201 (2005). https://doi.org/10.1038/nature0423524

    Article  ADS  Google Scholar 

  18. Bolotin, K.I., et al.: Observation of the fractional quantum Hall efect in graphene. Nature 462, 196 (2009). https://doi.org/10.1038/nature08582

    Article  ADS  Google Scholar 

  19. Seiberg, N., Witten, E.: String theory and noncommutative geometry. JHEP 1999(09), 032 (1999). https://doi.org/10.1088/1126-6708/1999/09/032

    Article  MathSciNet  MATH  Google Scholar 

  20. Gracia-Bondia, J.M.: Notes on quantum gravity and noncommutative geometry: new paths towards quantum gravity. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-11897-5_1

  21. Gingrich, D.M.: Noncommutative geometry inspired black holes in higher dimensions at the LHC. J. High Energy Phys. 2010, 22 (2010). https://doi.org/10.1007/jhep05(2010)022

    Article  MathSciNet  MATH  Google Scholar 

  22. Haouam, I.: Two-dimensional Pauli equation in noncommutative phase-space. Ukr. J. Phys. 66(9), 771 (2021). https://doi.org/10.15407/ujpe66.9.771

  23. Abyaneh, M.Z., Farhoudi, M.: Electron dynamics in noncommutative geometry with magnetic field and Zitterbewegung phenomenon. Eur. Phys. J. Plus 136, 863 (2021). https://doi.org/10.1140/epjp/s13360-021-01855-5

    Article  Google Scholar 

  24. Haouam, I.: On the Fisk- Tait equation for spin-3/2 fermions interacting with an external magnetic field in noncommutative space-time. J. Phys. Stud. 24, 1801 (2020). https://doi.org/10.30970/jps.24.1801

  25. Szabo, R.J.: Quantum field theory on noncommutative spaces. Phys. Rep. 378(4), 207 (2003). https://doi.org/10.1016/S0370-1573(03)00059-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Martinetti, P.: Beyond the standard model with noncommutative geometry, strolling towards quantum gravity. J. Phys.: Conf. Ser. 634, 012001 (2015).https://doi.org/10.1088/1742-6596/634/1/012001

  27. Haouam, I.: The non-relativistic limit of the DKP equation in non-commutative phase-space. Symmetry 11, 223 (2019). https://doi.org/10.3390/sym11020223

    Article  ADS  MATH  Google Scholar 

  28. Fring, A., et al.: Strings from position-dependent noncommutativity. J. Phys. A: Math. Theor. 43, 345401 (2010). https://doi.org/10.1088/1751-8113/43/34/345401

  29. Haouam, I.: Analytical solution of (2+1) dimensional Dirac equation in time-dependent noncommutative phase-space. Acta. Polytech. 60(2), 111 (2020). https://doi.org/10.14311/AP.2020.60.0111

  30. Haouam, I., Hassanabadi, H.: Exact solution of (2+1)-dimensional noncommutative Pauli equation in a time-dependent background. Int. J. Theor. Phys. 61, 215 (2022). https://doi.org/10.1007/s10773-022-05197-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Chaichian, M., Sheikh-Jabbari, M.M., Tureanu, A.: Hydrogen atom spectrum and the lamb shift in noncommutative QED. Phys. Rev. Lett. 86, 2716 (2001). https://doi.org/10.1103/PhysRevLett.86.2716

    Article  ADS  Google Scholar 

  32. Haouam, I.: On the noncommutative geometry in quantum mechanics. J. Phys. Stud. 24(2), 2002 (2020). https://doi.org/10.30970/jps.24.2002

  33. Gouba, L.: A comparative review of four formulations of noncommutative quantum mechanics. Int. J. Mod. Phys. A 31, 1630025 (2016). https://doi.org/10.1142/S0217751X16300258

    Article  ADS  MATH  Google Scholar 

  34. Haouam, I.: On the three-dimensional Pauli equation in noncommutative phase-space. Acta Polytech. 61(1), 230 (2021). https://doi.org/10.14311/AP.2021.61.0230

  35. Boumali, A., Hassanabadi. H.: Exact solutions of the (2+1)-dimensional Dirac oscillator under a magnetic field in the presence of a minimal length in the non-commutative phase space. Z. Naturforschung A 70(8), 619 (2015). https://doi.org/10.1515/zna-2015-0140

  36. Haouam, I.: Foldy-wouthuysen transformation of noncommutative dirac equation in the presence of minimal uncertainty in momentum. Few-Body Syst 64, 9 (2023). https://doi.org/10.1007/s00601-023-01790-4

    Article  ADS  Google Scholar 

  37. Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry and quantum mechanics. Phys. Rep. 251(5–6), 267 (1995). https://doi.org/10.1016/0370-1573(94)00080-M

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Nikiforov, A.F. and Uvarov, V.B.: Special functions of mathematical physics. Birkhauser, Basel (1988). https://doi.org/10.1007/978-1-4757-1595-8

  39. Adorno, T.C., et al.: Dirac equation in noncommutative space for hydrogen atom. Phys. Lett. B 682(2), 235 (2009). https://doi.org/10.1016/j.physletb.2009.11.003

    Article  ADS  MathSciNet  Google Scholar 

  40. Bertolami, O., Queiroz, R.: Phase-space noncommutativity and the Dirac equation. Phys. Lett. A 375(46), 4116 (2011). https://doi.org/10.1016/j.physleta.2011.09.053

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Haouam, I., Chetouani, L.: The Foldy-Wouthuysen transformation of the Dirac equation in noncommutative phase-space. J. Mod. Phys. 9, 2021 (2018). https://doi.org/10.4236/jmp.2018.911127

    Article  Google Scholar 

  42. Eshghi, M., Mehraban, H.: Solution of the dirac equation with position-dependent mass for q-parameter modified P/"oschl-teller and Coulomb-like tensor potential. Few-Body Syst. 52, 41 (2012). https://doi.org/10.1007/s00601-011-0238-5

    Article  ADS  Google Scholar 

  43. Hammoud, Z., Chetouani, L.: Bound states of the Duffin-Kemmer-Petiau equation for square potential well with position-dependent mass. Turk. J. Phys. 41(3), 183 (2017). https://doi.org/10.3906/fiz-1607-17

    Article  Google Scholar 

  44. Alhaidari, A.D., et al.: Relativistic scattering with a spatially dependent effective mass in the Dirac equation. Phys. Rev. A 75(6), (2007). https://doi.org/10.1103/PhysRevA.75.062711

  45. Cotăescu, I.I., Gravila, P., Paulescu, M.: Applying the Dirac equation to derive the transfer matrix for piecewise constant potentials. Phys. Lett. A 366(4–5), 363 (2007). https://doi.org/10.1016/j.physleta.2007.02.097

    Article  ADS  Google Scholar 

  46. Jia, C.S., de Souza Dutra, A.: Extension of PT-symmetric quantum mechanics to the Dirac theory with position-dependent mass. Ann. Phys. 323(3), 566 (2008). https://doi.org/10.1016/j.aop.2007.04.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Faniandari, S., Suparmi, A., Cari, C.: Study of thermomagnetic properties of the diatomic particle using hyperbolic function position dependent mass under the external hyperbolic magnetic and AB force. Mol. Phys. 120(12),(2022). https://doi.org/10.1080/00268976.2022.2083712

  48. Rashba, E.I., Sheka, V.I.: Symmetry of energy bands in crystals of wurtzite type II. Symmetry of Bands with Spin-Orbit Interaction Included, Fiz. Tverd. Tela: Collected Papers, v. 2, 162 (1959)

  49. Dresselhaus, G.: Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100(2), 580 (1955). https://doi.org/10.1103/PhysRev.100.580

    Article  ADS  MATH  Google Scholar 

  50. Bihlmayer, G., Rader, O., Winkler, R.: Focus on the Rashba effect. New J. Phys. 17(5),(2015). https://doi.org/10.1088/1367-2630/17/5/050202

  51. Kria, M., et al.: Rashba effect on linear and nonlinear optical properties of a cylindrical core/shell heterojunction quantum dot. Front. Phys. 10, 942758 (2022). https://doi.org/10.3389/fphy.2022.942758

  52. Bychkov, Y.A., Rashba, É.I.: Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39(2), 78 (1984)

    ADS  Google Scholar 

  53. Žutić, I., Fabian, J., Sarma, S.D.: Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76(2), 323 (2004). https://doi.org/10.1103/RevModPhys.76.323

    Article  ADS  Google Scholar 

  54. Kane, C.L., Mele, E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95(22), 226801 (2005). https://doi.org/10.1103/PhysRevLett.95.226801

    Article  ADS  Google Scholar 

  55. Hernangómez-Pérez, D., Florens, S., Champel, T.: Signatures of Rashba spin-orbit interaction in charge and spin properties of quantum Hall systems. Phys. Rev. B 89(15), 155314 (2014). https://doi.org/10.1103/PhysRevB.89.155314

    Article  ADS  Google Scholar 

  56. Lenz, L., Urban, D.F., Bercioux, D.: Rashba spin-orbit interaction in graphene armchair nanoribbons. Eur. Phys. J. B 86, 502 (2013). https://doi.org/10.1140/epjb/e2013-40760-4

    Article  ADS  Google Scholar 

  57. Mihai Miron, I., et al.: Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230 (2010). https://doi.org/10.1038/nmat2613

    Article  ADS  Google Scholar 

  58. Chen, J., Jalil, M.B.A., Tan, S.G.: Spin torque due to non-uniform Rashba spin orbit effect. AIP Adv. 2(4), 042133 (2012). https://doi.org/10.1063/1.4766438

    Article  ADS  Google Scholar 

  59. Hassanabadi, H., Yazarloo, B.H., Salehi, N.: Pseudospin and spin symmetry of Dirac equation under Deng-Fan potential and Yukawa potential as a tensor interaction. Indian. J. Phys. 88, 405 (2014). https://doi.org/10.1007/s12648-013-0426-x

    Article  ADS  Google Scholar 

  60. Hassanabadi, H., et al.: Exact Solutions of D-Dimensional Schrödinger Equation for an Energy-Dependent Potential by NU Method. Commun. Theor. Phys. 55, 541 (2011). https://doi.org/10.1088/0253-6102/55/4/01

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Yamani, H.A., Fishman, L.: J-matrix method: Extensions to arbitrary angular momentum and to Coulomb scattering. J. Math. Phys. 16(2), 410 (1975). https://doi.org/10.1063/1.522516

    Article  ADS  MATH  Google Scholar 

  62. Arickx, F., et al.: Algebraic method for the quantum theory of scattering. Am. J. Phys. 62(4), 362 (1994). https://doi.org/10.1119/1.17579

    Article  ADS  Google Scholar 

  63. Stern, A.: Noncommutative point sources. Phys. Rev. Lett. 100(6),(2008). https://doi.org/10.1103/PhysRevLett.100.061601

  64. Saha, A., Gangopadhyay, S., Saha, S.: Noncommutative quantum mechanics of a harmonic oscillator under linearized gravitational waves. Phys. Rev. D 83(2), 025004 (2011). https://doi.org/10.1103/PhysRevD.83.025004

    Article  ADS  Google Scholar 

  65. Bertolami, O., et al.: Noncommutative gravitational quantum well. Phys. Rev. D 72, 025010 (2005). https://doi.org/10.1103/PhysRevD.72.025010

    Article  ADS  MathSciNet  Google Scholar 

  66. Ahmed, F.: The Dirac equation in a class of topologically trivial flat Gödel-type space-time backgrounds. Eur. Phys. J. C 79, 534 (2019). https://doi.org/10.1140/epjc/s10052-019-7029-4

    Article  ADS  Google Scholar 

  67. Collas, P., Klein, D.: The dirac equation in curved spacetime: a guide for calculations. Springer (2019). https://doi.org/10.1007/978-3-030-14825-6

  68. Bychkov, Y.A., Rashba, E.I.: Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C: Solid State Phys. 17(33), 6039 (1984). https://doi.org/10.1088/0022-3719/17/33/015

    Article  ADS  Google Scholar 

  69. Vitória, R.L.L., Bakke, K.: Relativistic quantum effects of confining potentials on the Klein-Gordon oscillator. Eur. Phys. J. Plus 131, 36 (2016). https://doi.org/10.1140/epjp/i2016-16036-4

    Article  Google Scholar 

  70. Vitória, R.L.L., Furtado, C., Bakke, K.: On a relativistic particle and a relativistic position-dependent mass particle subject to the Klein-Gordon oscillator and the Coulomb potential. Ann. Phys. 370, 128 (2016). https://doi.org/10.1016/j.aop.2016.03.016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Bjorken, J.D., Drell, S.D.: Relativistic quantum mechanics. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  72. Shankar, R.: The dirac equation. In: Principles of Quantum Mechanics. Springer, New York (1994). https://doi.org/10.1007/978-1-4757-0576-8_20

  73. Yuan, Y., et al.: Spin-1/2 relativistic particle in a magnetic field in NC phase space. Chin. Phys. C 34(5), 543 (2010). https://doi.org/10.1088/1674-1137/34/5/005

    Article  ADS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Haouam.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Nikiforov-Uvarov Method

Appendix: Nikiforov-Uvarov Method

The Nikiforov Uvarov (NU) method is an exact approach to obtain the energy eigenvalues and corresponding wave functions of a vast variety of quantum systems, as done in Refs. [38, 59, 60], etc.

Here we give a brief description of the conventional NU method [38]. This powerful mathematical method was proposed to solve large classes of second-order linear ordinary differential equation of hyper-geometric type or a general Schrödinger-type equation with an appropriate coordinate transformation \(s=s(r\)) as

$$\begin{aligned} \left\{ \frac{\partial ^{2}}{\partial s^{2}}+\frac{a_{1}-a_{2}s}{s\left( 1-a_{3}s\right) }\frac{\partial }{\partial s}+\frac{-\lambda _{1}s^{2}+\lambda _{2}s-\lambda _{3}}{s^{2}\left( 1-a_{3}s\right) ^{2}}\right\} \chi \left( s\right) =0. \end{aligned}$$
(A1)

To obtain the eigenvalues and corresponding wave functions, we introduce the following relations

$$\begin{aligned} \begin{array}{ccc} a_{4}=\frac{1}{2}\left( 1-a_{1}\right) , &{} a_{5}=\frac{1}{2}\left( a_{2}-2a_{3}\right) , &{} a_{6}=a_{5}^{2}+\lambda _{1},\\ a_{7}=2a_{4}a_{5}-\lambda _{2}, &{} a_{8}=a_{4}^{2}+\lambda _{3}, &{} a_{9}=a_{3}a_{7}+a_{3}^{2}a_{8}+a_{6},\\ a_{10}=a_{1}+2a_{4}+2\sqrt{a_{8}},\; &{} a_{11}=a_{2}-2a_{5}+2\left( \sqrt{a_{9}}+a_{3}\sqrt{a_{8}}\right) , &{} a_{12}=a_{4}+\sqrt{a_{8}},\\ &{} a_{13}=a_{5}-\left( \sqrt{a_{9}}+a_{3}\sqrt{a_{8}}\right) . \end{array} \end{aligned}$$
(A2)

Then, the energy equation reads

$$\begin{aligned} a_{2}N-\left( 2N+1\right) a_{5}+\left( 2N+1\right) \left( \sqrt{a_{9}}+a_{3}\sqrt{a_{8}}\right) +N\left( N-1\right) a_{3}+a_{7}+2a_{3}a_{8}+2\sqrt{a_{8}a_{9}}=0. \end{aligned}$$
(A3)

Furthermore, the final wave function in NU method will be as follows

$$\begin{aligned} \psi \left( s\right) =s^{a_{12}}\left( 1-a_{3}s\right) ^{-a_{12}-\frac{a_{13}}{a_{3}}}P_{N}^{\left( a_{10}-1,\frac{a_{11}}{a_{3}}-a_{10}-1\right) }\left( 1-2a_{3}s\right) . \end{aligned}$$
(A4)

If \(a_{3}=0\), (A4) will be reduced to

$$\begin{aligned} \psi \left( s\right) =s^{a_{12}}e^{a_{13}s}L_{N}^{a_{10}-1}\left( a_{11}s\right) . \end{aligned}$$
(A5)

Here \(L_{N}\), \(P_{N}^{\left( A,B\right) }\) are Laguerre functions and Jacobi polynomials respectively, which are given as follows [59]

$$\begin{aligned} P_{N}^{\left( A,B\right) }\left( s\right) =\frac{\Gamma \left( A+n+1\right) }{n!\Gamma \left( A+B+n+1\right) }\sum _{m=0}^{n}\left( \begin{array}{c} n\\ m \end{array}\right) \frac{\Gamma \left( A+n+m+1\right) }{n!\Gamma \left( A+m+1\right) }\left( \frac{s-1}{2}\right) ^{m}, \end{aligned}$$
(A6)

and [60]

$$\begin{aligned} L_{N}=\frac{e^{s}}{N!}\frac{d^{N}}{ds^{N}}\left( e^{-s}s^{N}\right) =\frac{1}{N!}\left( \frac{d}{ds}-1\right) ^{N}s^{N}, \end{aligned}$$
(A7)

which defined by the Rodrigues formula.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haouam, I. Solutions of Noncommutative Two-Dimensional Position–Dependent Mass Dirac Equation in the Presence of Rashba Spin-Orbit Interaction by Using the Nikiforov–Uvarov Method. Int J Theor Phys 62, 111 (2023). https://doi.org/10.1007/s10773-023-05361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05361-5

Keywords

Navigation