Skip to main content
Log in

Hybrid Phase-Based Representation of Quantum Images

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a novel and hybrid quantum-classical algorithm that requires only \(O(\log {HW})\) qubits and reduces the multi-qubit gate costs required to represent an image of dimension \((H \times W)\). In this algorithm, no qubit is needed to store the color information of the image. We represent the location information of an image with a superposition of mutually orthogonal vectors of an arbitrary basis and store the pixel information in the phases of the corresponding basis vectors without any extra qubit cost. We further present a classical algorithm to encode the phases and show that the inclusion of the classical algorithm significantly reduces the number of multi-qubit quantum gates required for image representation. Finally, we implement our algorithm on the classical simulator provided by IBM quantum as a proof of concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Quantum Information and Computation , vol. 5105, pp. 137–147. International Society for Optics and Photonics (2003)

  2. Latorre, J.I.: Image compression and entanglement. quant-ph/0510031 (2005)

  3. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    MathSciNet  Google Scholar 

  4. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K. An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform 17(3) (2013)

  6. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.-H.: Red-green-blue multi-channel quantum representation of digital images. Optik 128, 121–132 (2017)

    ADS  Google Scholar 

  12. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 1–14 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Li, H.-S., Chen, X., Xia, H., Liang, Y., Zhou, Z.: A quantum image representation based on bitplanes. IEEE Access 6, 62396–62404 (2018)

    Google Scholar 

  14. Liu, K., Zhang, Y., Lu, K., Wang, X., Wang, X.: An optimized quantum representation for color digital images. Int. J. Theor. Phys. 57(10), 2938–2948 (2018)

    MATH  Google Scholar 

  15. Şahin, E., Yilmaz, I.: QRMW: quantum representation of multi wavelength images. Turk. J. Electr. Eng. Comput. Sci. 26(2), 768–779 (2018)

    Google Scholar 

  16. Li, P., Liu, X.: Color image representation model and its application based on an improved FRQI. Int. J. Quantum Inf. 16(01), 1850005 (2018)

    ADS  MATH  Google Scholar 

  17. Wang, L., Ran, Q., Ma, J., Yu, S., Tan, L.: QRCI: a new quantum representation model of color digital images. Opt. Commun. 438, 147–158 (2019)

    ADS  Google Scholar 

  18. Xu, G., Xu, X., Wang, X., Wang, X.: Order-encoded quantum image model and parallel histogram specification. Quantum Inf. Process. 18(11), 1–26 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Wang, L., Ran, Q., Ma, J.: Double quantum color images encryption scheme based on DQRCI. Multimed. Tools Appl. 79(9), 6661–6687 (2020)

    Google Scholar 

  20. Mandal, A., Banerjee, S., Panigrahi, P.K. Quantum image representation on clusters. In: 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) pp. 89–99. IEEE (2021)

  21. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Jiang, N., Lu, X., Hu, H., Dang, Y., Cai, Y.: A novel quantum image compression method based on JPEG. Int. J. Theor. Phys. 57(3), 611–636 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Li, X.-Z., Chen, W.-W., Wang, Y.-Q.: Quantum image compression-encryption scheme based on quantum discrete cosine transform. Int. J. Theor. Phys. 57(9), 2904–2919 (2018)

    MATH  Google Scholar 

  24. Dai, J.-Y., Ma, Y., Zhou, N.-R.: Quantum multi-image compression-encryption scheme based on quantum discrete cosine transform and 4d hyper-chaotic henon map. Quantum Inf. Process. 20(7), 1–24 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Abdel-Khalek, S., Abdel-Azim, G., Abo-Eleneen, Z.A., Obada, A.-S.F.: New approach to image edge detection based on quantum entropy. J. Russ Laser Res. 37(2), 141–154 (2016)

    Google Scholar 

  26. Yao, X.-W., Wang, H., Liao, Z., Chen, M.-C., Pan, J., Li, J., Zhang, K., Lin, X., Wang, Z., Luo, Z., et al.: Quantum image processing and its application to edge detection: theory and experiment. Phys. Rev. X 7(3), 031041 (2017)

    Google Scholar 

  27. Fan, P., Zhou, R.-G., Hu, W., Jing, N.: Quantum image edge extraction based on classical sobel operator for NEQR. Quantum Inf. Process. 18(1), 1–23 (2019)

    MATH  Google Scholar 

  28. Zhou, R.-G., Liu, D.-Q.: Quantum image edge extraction based on improved sobel operator. Int. J. Theor. Phys. 58(9), 2969–2985 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Fan, P., Zhou, R.-G., Hu, W.W., Jing, N.: Quantum image edge extraction based on laplacian operator and zero-cross method. Quantum Inf. Process. 18(1), 1–23 (2019)

    MATH  Google Scholar 

  30. Zhou, R.-G., Yu, H., Cheng, Y., Li, F.-X.: Quantum image edge extraction based on improved prewitt operator. Quantum Inf. Process. 18(9), 1–24 (2019)

    ADS  MATH  Google Scholar 

  31. Youssry, A., El-Rafei, A., Elramly, S.: A quantum mechanics-based framework for image processing and its application to image segmentation. Quantum Inf. Process. 14(10), 3613–3638 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Wang, L., Deng, Z., Liu, W.: An improved two-threshold quantum segmentation algorithm for NEQR image. Quantum Inf. Process. 21(8), 1–20 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Information Processing 14(5), 1589–1604 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Fan, P., Zhou, R.-G., Jing, N., Li, H.-S.: Geometric transformations of multidimensional color images based on NASS. Inf. Sci. 340, 191–208 (2016)

    Google Scholar 

  37. Abd-El-Atty, B., El-Latif, A., Ahmed, A., Venegas-Andraca, S.E.: An encryption protocol for NEQR images based on one-particle quantum walks on a circle. Quantum Inf. Process. 18(9), 1–26 (2019)

    MATH  Google Scholar 

  38. Wang, J., Geng, Y.-C., Han, L., Liu, J.-Q.: Quantum image encryption algorithm based on quantum key image. Int. J. Theor. Phys. 58(1), 308–322 (2019)

    MATH  Google Scholar 

  39. Iliyasu, A.M., Le, P.Q. Dong, F., Hirota, K. Restricted geometric transformations and their applications for quantum image watermarking and authentication. In: Proceedings of the 10th Asian Conference on Quantum Information Science (AQIS 2010), pp. 212–214 (2010)

  40. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, W.-W., Gao, F., Liu, B., Wen, Q.-Y., Chen, H.: A watermark strategy for quantum images based on quantum fourier transform. Quantum Inf. Process. 12(2), 793–803 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Zhou, R.-G., Yang, P.L., Liu, X.A., Ian, H.: Quantum color image watermarking based on fast bit-plane scramble and dual embedded. Int. J. Quantum Inf. 16(07), 1850060 (2018)

    MATH  Google Scholar 

  43. Luo, G., Zhou, R.-G., Luo, J., Hu, W., Zhou, Y., Ian, H.: Adaptive LSB quantum watermarking method using tri-way pixel value differencing. Quantum Inf. Process. 18(2), 1–20 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Zeng, Q.-W., Wen, Z.-Y., Fu, J.-F., Zhou, N.-R.: Quantum watermark algorithm based on maximum pixel difference and tent map. Int. J. Theor. Phys. 60(9), 3306–3333 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on moiré pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)

    MATH  Google Scholar 

  46. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    MATH  Google Scholar 

  47. Qiskit documentation for the implementation of a \((2 \times 2)\) grayscale image using FRQI

Download references

Acknowledgements

The authors acknowledge IBM Quantum for providing access to their quantum simulators.

Author information

Authors and Affiliations

Authors

Contributions

A.M. proposed and developed the hybrid algorithm and wrote the initial manuscript. S.B. modified the algorithm and manuscript. P.K.P supervised the work. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Arijit Mandal.

Ethics declarations

Competing Interests

The authors declare no Competing Interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Banerjee, S. & Panigrahi, P.K. Hybrid Phase-Based Representation of Quantum Images. Int J Theor Phys 62, 115 (2023). https://doi.org/10.1007/s10773-023-05354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05354-4

Keywords

Navigation