Skip to main content
Log in

Dynamic Dissipative Cooling of a Magnomechanical Resonator in The Strong Magnomechanical Coupling Regime

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A cavity magnomechanical system with a yttrium iron garnet (YIG) sphere is proposed to realize the ground-state cooling of the magnomechanical resonator in the strong coupling regime. We theoretically investigate the cooling dynamics of the system and find that the magnomechanical resonator can be effectively cooled by dynamic dissipative modulation of the magnon mode within the range of experimentally feasible parameters. Moreover, we show that the cooling process is significantly accelerated and its cooling limit can be reduced remarkably by employing the periodic pulse dissipation. The scheme provides a new perspective for the research of ground-state cooling of magnomechanical resonators, which is helpful for the quantum manipulation of macroscopic mechanical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [Liao], upon reasonable request.

References

  1. Kimble, H.J.: The quantum internet. Nat. 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  2. Wallquist, M., Hammerer, K., Rabl, P., Lukin, M., Zoller, P.: Hybrid quantum devices and quantum engineering. Phys. Scripta. 2009, 014001 (2009)

    Article  Google Scholar 

  3. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  4. Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. P. Natl. A. Sci. 112, 3866–3873 (2015)

    Article  ADS  Google Scholar 

  5. Imamoğlu, A.: Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009)

    Article  ADS  Google Scholar 

  6. Soykal, Ö.O., Flatté, M.E.: Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104, 077202 (2010)

    Article  ADS  Google Scholar 

  7. Huebl, H., Zollitsch, C.W., Lotze, J., Hocke, F., Greifenstein, M., Marx, A., Goennenwein, S.T.: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013)

    Article  ADS  Google Scholar 

  8. Goryachev, M., Farr, W.G., Creedon, D.L., Fan, Y., Kostylev, M., Tobar, M.E.: High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2, 054002 (2014)

    Article  ADS  Google Scholar 

  9. Tabuchi, Y., Ishino, S., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014)

    Article  ADS  Google Scholar 

  10. Lachance-Quirion, D., Tabuchi, Y., Gloppe, A., Usami, K., Nakamura, Y.: Hybrid quantum systems based on magnonics. Appl. Phys. Express. 12, 070101 (2019)

    Article  ADS  Google Scholar 

  11. Yuan, H.Y., Cao, Y., Kamra, A., Duine, R.A., Yan, P.: Quantum magnonics: When magnon spintronics meets quantum information science. Phys. Rep. 965, 1–74 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Zhang, X., Zou, C.L., Jiang, L., Tang, H.X.: Cavity magnomechanics. Sci. Adv. 2, e1501286 (2016)

    ADS  Google Scholar 

  13. Zhang, X., Zou, C.L., Jiang, L., Tang, H.X.: Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)

    Article  ADS  Google Scholar 

  14. Kittel, C.: On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155 (1948)

    Article  ADS  Google Scholar 

  15. Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Sci. 349, 405–408 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lachance-Quirion, D., Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Nakamura, Y.: Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet. Sci. Adv. 3, e1603150 (2017)

    Article  ADS  Google Scholar 

  17. Hei, X.L., Dong, X.L., Chen, J.Q., Shen, C.P., Qiao, Y.F., Li, P.B.: Enhancing spin-photon coupling with a micromagnet. Phys. Rev. A. 103, 043706 (2021)

    Article  ADS  Google Scholar 

  18. Li, J., Zhu, S.Y., Agarwal, G.S.: Magnon-photon-phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018)

    Article  ADS  Google Scholar 

  19. Qiu, W., Cheng, X., Chen, A., Lan, Y., Nie, W.: Controlling quantum coherence and entanglement in cavity magnomechanical systems. Phys. Rev. A. 105, 063718 (2022)

    Article  ADS  Google Scholar 

  20. Rameshti, B.Z., Kusminskiy, S.V., Haigh, J.A., Usami, K., Lachance-Quirion, D., Nakamura, Y., Blanter, Y.M.: Cavity magnonics. Phys. Rep. 979, 1–61 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wang, Y.P., Zhang, G.Q., Zhang, D., Li, T.F., Hu, C.M., You, J.Q.: Bistability of cavity magnon polaritons. Phys. Rev. Lett. 120, 057202 (2018)

    Article  ADS  Google Scholar 

  22. Bi, M.X., Yan, X.H., Zhang, Y., Xiao, Y.: Tristability of cavity magnon polaritons. Phys. Rev. B. 103, 104411 (2021)

    Article  ADS  Google Scholar 

  23. Wang, Y.P., Rao, J.W., Yang, Y., Xu, P.C., Gui, Y.S., Yao, B.M., Hu, C.M.: Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett. 123, 127202 (2019)

    Article  ADS  Google Scholar 

  24. Kong, C., Bao, X.M., Liu, J.B., Xiong, H.: Magnon-mediated nonreciprocal microwave transmission based on quantum interference. Opt. Express. 29, 25477–25487 (2021)

    Article  ADS  Google Scholar 

  25. Shi, Y., Zhang, C., Jiang, C., Ong, C.K., Chai, G.: Mirror symmetric nonreciprocity and circular transmission in cavity magnonics. Appl. Phys. Lett. 119, 132403 (2021)

    Article  ADS  Google Scholar 

  26. Xu, W.L., Liu, X.F., Sun, Y., Gao, Y.P., Wang, T.J., Wang, C.: Magnon-induced chaos in an optical PT-symmetric resonator. Phys. Rev. E. 101, 012205 (2020)

    Article  ADS  Google Scholar 

  27. Wang, M., Kong, C., Sun, Z.Y., Zhang, D., Wu, Y.Y., Zheng, L.L.: Nonreciprocal high-order sidebands induced by magnon Kerr nonlinearity. Phys. Rev. A. 104, 033708 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. Wu, W.J., Wang, Y.P., Wu, J.Z., Li, J., You, J.Q.: Remote magnon entanglement between two massive ferrimagnetic spheres via cavity optomagnonics. Phys. Rev. A. 104, 023711 (2021)

    Article  ADS  Google Scholar 

  29. Mousolou, V.A., Liu, Y., Bergman, A., Delin, A., Eriksson, O., Pereiro, M., Sjöqvist, E.: Magnon-magnon entanglement and its quantification via a microwave cavity. Phys. Rev. B. 104, 224302 (2021)

    Article  ADS  Google Scholar 

  30. Hussain, B., Qamar, S., Irfan, M.: Entanglement enhancement in cavity magnomechanics by an optical parametric amplifier. Phys. Rev. A. 105, 063704 (2022)

    Article  ADS  Google Scholar 

  31. Sohail, A., Ahmed, R., Zainab, R., Yu, C.S.: Enhanced entanglement and quantum steering of directly and indirectly coupled modes in a magnomechanical system. Phys. Scr. 97, 075102 (2022)

    Article  ADS  Google Scholar 

  32. Sohail, A., Hassan, A., Ahmed, R., Yu, C.S.: Generation of enhanced entanglement of directly and indirectly coupled modes in a two-cavity magnomechanical system. Quantum. Inf. Process. 21, 207 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Wang, K., Gao, Y.P., Jiao, R., Wang, C.: Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys. 17, 42201 (2022)

    Article  ADS  Google Scholar 

  34. Harder, M., Yao, B.M., Gui, Y.S., Hu, C.M.: Coherent and dissipative cavity magnonics. J. Appl. Phys. 129, 201101 (2021)

    Article  ADS  Google Scholar 

  35. Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  Google Scholar 

  36. Zhang, K.Y., Zhou, L., Dong, G.J., Zhang, W.P.: Cavity optomechanics with cold atomic gas. Front. Phys. 6, 237–250 (2011)

    Article  ADS  Google Scholar 

  37. Ding, M.S., Zheng, L., Li, C.: Ground-state cooling of an magnomechanical resonator induced by magnetic damping. J. Opt. Soc. Am. B. 37, 627 (2020)

    Article  ADS  Google Scholar 

  38. Kani, A., Sarma, B., Twamley, J.: Intensive cavity-magnomechanical cooling of a levitated macromagnet. Phys. Rev. Lett. 128, 013602 (2022)

    Article  ADS  Google Scholar 

  39. Yang, Z.X., Wang, L., Liu, Y.M., Wang, D.Y., Bai, C.H., Zhang, S., Wang, H.F.: Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys. 15, 52504 (2020)

    Article  ADS  Google Scholar 

  40. Sharma, S., Blanter, Y.M., Bauer, G.E.: Optical cooling of magnons. Phys. Rev. Lett. 121, 087205 (2018)

    Article  ADS  Google Scholar 

  41. Asjad, M., Li, J., Zhu, S.Y., You, J.Q.: Magnon squeezing enhanced ground-state cooling in cavity magnomechanics. Fundamental. Research. 3, 3–7 (2023)

    Article  Google Scholar 

  42. Wang, D.Y., Bai, C.H., Liu, S., Zhang, S., Wang, H.F.: Optomechanical cooling beyond the quantum backaction limit with frequency modulation. Phys. Rev. A. 98, 023816 (2018)

    Article  ADS  Google Scholar 

  43. Bao, Y., Liao, Q., Zhao, Q., Wu, J.: Suppression of Stokes heating processes and improved optomechanical cooling with frequency modulation. Commun. Theor. Phys. 74, 045102 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  44. Gan, J.H., Liu, Y.C., Lu, C., Wang, X., Tey, M.K., You, L.: Intracavity-squeezed optomechanical cooling. Laser. Photonics. Rev. 13, 1900120 (2019)

    Article  Google Scholar 

  45. Asjad, M., Abari, N.E., Zippilli, S., Vitali, D.: Optomechanical cooling with intracavity squeezed light. Opt. Express. 27, 32427–32444 (2019)

    Article  ADS  Google Scholar 

  46. Liu, Y.C., Xiao, Y.F., Luan, X., Gong, Q., Wong, C.W.: Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Phys. Rev. A. 91, 033818 (2015)

    Article  ADS  Google Scholar 

  47. Yang, Z., Yang, J., Chao, S.L., Zhao, C., Peng, R., Zhou, L.: Simultaneous ground-state cooling of identical mechanical oscillators by Lyapunov control. Opt. Express. 30, 20135–20148 (2022)

    Article  ADS  Google Scholar 

  48. Wang, Y.P., Zhang, G.Q., Zhang, D., Luo, X.Q., Xiong, W., Wang, S.P., You, J.Q.: Magnon Kerr effect in a strongly coupled cavity-magnon system. Phys. Rev. B. 94, 224410 (2016)

    Article  ADS  Google Scholar 

  49. Kittel, C.: Interaction of spin waves and ultrasonic waves in ferromagnetic crystals. Phys. Rev. 110, 836–841 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Simon, R.: Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726–2729 (2000)

    Article  ADS  Google Scholar 

  51. Yin, Z.Q., Yang, W.L., Sun, L., Duan, L.M.: Quantum network of superconducting qubits through optomechanical interface. Phys. Rev. A. 91, 012333 (2015)

    Article  ADS  Google Scholar 

  52. DeJesus, E.X., Kaufman, C.: Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A. 35, 5288 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  53. Li, J., Zhu, S.Y., Agarwal, G.S.: Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A. 99, 021801 (2019)

    Article  ADS  Google Scholar 

  54. Cheng, J., Liu, Y.M., Yi, X., Wang, H.F.: Generation and enhancement of mechanical squeezing in a hybrid cavity magnomechanical System. Ann. Phys. 534, 2100493 (2022)

    Article  Google Scholar 

  55. Chiba, T., Leon, A.O., Komine, T.: Voltage-control of damping constant in magnetic-insulator/topological-insulator bilayers. Appl. Phys. Lett. 118, 252402 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 62061028), the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (Grant No. ammt2021A-4), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), the Interdisciplinary Innovation Fund of Nanchang University (Grant No. 9166-27060003-YB12), and the Open Research Fund Program of Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education (Grant No. OEIAM202004).

Author information

Authors and Affiliations

Authors

Contributions

Qinghong Liao: Conceptualization, Methodology, Software, Investigation, Formal Analysis, Writing - Original Draft; Zhuo Zhang: Data Curation, Writing - Original Draft; Tian Xiao: Visualization, Investigation; Menglin Song: Supervision; Ruochuang Liu: Writing - Review & Editing

Corresponding author

Correspondence to Qinghong Liao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Equation (16) corresponds to dynamics differential equation of the second-order moments.

$$\begin{array}{c}\frac{d}{dt}\langle \delta {m}^{\dagger}\delta m\rangle =-i(G\langle \delta {m}^{\dagger}\delta b\rangle -{G}^{*}{\langle \delta {m}^{\dagger}\delta b\rangle }^{*}+G{\langle \delta m\delta b\rangle }^{*}-{G}^{*}\langle \delta m\delta b\rangle )-{\kappa }_{eff}\langle \delta {m}^{\dagger}\delta m\rangle ,\\ \frac{d}{dt}\langle \delta {b}^{\dagger}\delta b\rangle =-i(-G\langle \delta {m}^{\dagger}\delta b\rangle +{G}^{*}{\langle \delta {m}^{\dagger}\delta b\rangle }^{*}+G{\langle \delta m\delta b\rangle }^{*}-{G}^{*}\langle \delta m\delta b\rangle )-{\gamma }_{b}\langle \delta {b}^{\dagger}\delta b\rangle +{\gamma }_{b}{n}_{th},\\ \frac{d}{dt}\langle \delta {m}^{\dagger}\delta b\rangle =[-i({\Delta }_{eff}+{\omega }_{b})-\frac{{\kappa }_{eff}+{\gamma }_{b}}{2}]\langle \delta {m}^{\dagger}\delta b\rangle -i({G}^{*}\langle \delta {m}^{\dagger}\delta m\rangle -{G}^{*}\langle \delta {b}^{\dagger}\delta b\rangle +G{\langle \delta {m}^{2}\rangle }^{*}-{G}^{*}{\langle \delta {b}^{2}\rangle }^{*}),\\ \frac{d}{dt}\langle \delta m\delta b\rangle =[i({\Delta }_{eff}-{\omega }_{b})-\frac{{\kappa }_{eff}+{\gamma }_{b}}{2}]\langle \delta m\delta b\rangle -i(G\langle \delta {m}^{\dagger}\delta m\rangle +G\langle \delta {b}^{\dagger}\delta b\rangle +G+{G}^{*}\langle \delta {m}^{2}\rangle +G\langle \delta {b}^{2}\rangle ),\\ \frac{d}{dt}\langle \delta {m}^{2}\rangle =(2i{\Delta }_{eff}-{\kappa }_{eff})\langle \delta {m}^{2}\rangle -2iG(\langle \delta m\delta b\rangle +{\langle \delta {m}^{\dagger}\delta b\rangle }^{*}),\\ \frac{d}{dt}\langle \delta {b}^{2}\rangle =(-2i{\omega }_{b}-{\gamma }_{b})\langle \delta {b}^{2}\rangle -2i({G}^{*}\langle \delta m\delta b\rangle +G\langle \delta {m}^{\dagger}\delta b\rangle ).\end{array}$$
(16)

When the stability conditions are satisfied, the system will evolve to the steady-state. Then, let all derivative terms on the left side of the above system of covariance differential equations be zero, and the steady-state cooling limit is obtained by solving it. We focus on the resolved sideband regime \({\kappa }_{eff}<{\omega }_{b}\), and set \({\Delta }_{eff}=-{\omega }_{b}\). In addition, the cooperativity is \(C=4{\left|G\right|}^{2}/\left(\kappa \gamma \right)\gg 1\). The steady-state average phonon number is given by

$${\overline{N} }_{std}\simeq \frac{4{|G|}^{2}+{\kappa }_{eff}^{2}}{4{|G|}^{2}({\kappa }_{eff}+{\gamma }_{b})}{\gamma }_{b}{n}_{th}+\frac{4{\omega }_{b}^{2}({\kappa }_{eff}^{2}+8{|G|}^{2})+{\kappa }_{eff}^{2}({\kappa }_{eff}^{2}-8{|G|}^{2})}{16{\omega }_{b}^{2}(4{\omega }_{b}^{2}+{\kappa }_{eff}^{2}-16{|G|}^{2})}.$$
(17)

In the case of the resolved sideband, it can be simplified to

$${\overline{N} }_{std}\simeq \frac{{\gamma }_{b}{n}_{th}(4{|G|}^{2}+{\kappa }_{eff}^{2})}{4{|G|}^{2}({\kappa }_{eff}+{\gamma }_{b})}+\frac{{\kappa }_{eff}^{2}+8{|G|}^{2}}{16{\omega }_{b}^{2}({\omega }_{b}^{2}-4{|G|}^{2})},$$
(18)

By adjusting the intensity of the external drive magnetic field, the magnomechanical coupling strength can be achieved to the strong coupling regime \(\left(G>{\kappa }_{eff}\right)\). The steady-state average phonon number can be further simplified as

$${\overline{N} }_{std}\simeq \frac{{\gamma }_{b}{n}_{th}}{{\kappa }_{eff}+{\gamma }_{b}}+\frac{{|G|}^{2}}{2({\omega }_{b}^{2}-4{|G|}^{2})}.$$
(19)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q., Zhang, Z., Xiao, T. et al. Dynamic Dissipative Cooling of a Magnomechanical Resonator in The Strong Magnomechanical Coupling Regime. Int J Theor Phys 62, 83 (2023). https://doi.org/10.1007/s10773-023-05345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05345-5

Keywords

Navigation