Skip to main content
Log in

Solving the Fully Entangled Fraction on Near-Term Quantum Devices

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The fully entangled fraction (FEF) is related to many quantum information processes. In this paper, we propose a variational quantum algorithm to solve the FEF of a given quantum state without density matrix on near-term quantum devices without using quantum state tomography. By constructing parameterized circuit, we convert the problem that solving the FEF into the all-zero measurement probability of the final state. The FEF of Isotropic states and Werner states are simulated numerically and verified to be in agreement with the analytical solution. And the numerical experiments prove the feasibility of our algorithm. Our results can be used to detect entanglement or distillability without knowing the density matrix of quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Shor, P.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Symposium on Foundations of Computer Science, pp 124–134. IEEE, Piscataway (1994)

  2. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  3. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev Lett. 103, 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bharti, K., et al.: Noisy intermediate-scale quantum (NISQ) algorithms. arXiv:2101.08448 (2021)

  5. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  6. Biamonte, J.: Universal variational quantum computation. Phys. Rev. A 103, L030401 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  7. Cerezo, M., et al.: Variational quantum algorithms. Nat Rev Phys 3, 625–644 (2021)

    Article  Google Scholar 

  8. Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 1–7 (2014)

    Article  Google Scholar 

  9. Izmaylov, A.F., Díaz-Tinoco, M., Lang, R.A.: On the order problem in construction of unitary operators for the Variational Quantum Eigensolver. Phys. Chem. Chem. Phys. 22, 12980 (2020)

    Article  Google Scholar 

  10. Wang, X., Song, Z., Wang, Y.: Variational quantum singular value decomposition. Quantum 5, 483 (2021)

    Article  Google Scholar 

  11. Chen, R., Zhao, B., Wang, X.: Variational quantum algorithm for schmidt decomposition. arXiv:2109.10785 (2021)

  12. Li, S.-J., et al.: Variational quantum algorithms for trace norms and their applications. Commun. Theor. Phys. 73, 105102 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  13. Chen, R., Song, Z., Zhao, X., Wang, X.: Variational quantum algorithms for trace distance and fidelity estimation. Quantum Sci. Technol. 7, 015019 (2021)

    Article  ADS  Google Scholar 

  14. Mahdian, M., Davoodi Yeganeh, H.: Toward a quantum computing algorithm to quantify classical and quantum correlation of system states. Quantum Inf Process 20, 393 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Cerezo, M., et al.: Variational quantum fidelity estimation. Quantum 4, 248 (2020)

    Article  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Boschi, D., Branca, S., DeMartini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: ”Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  20. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Zhao, M.-J.: Maximally entangled states and fully entangled fraction. Phys. Rev. 91, 012310 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Zhao, M.-J., et al.: A note on fully entangled fraction. J. Phys. A Math. Theor. 43, 275203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grondalski, J., Etlinger, D.M., James, D.F.V.: The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A 300, 573 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Li, M., Fei, S.-M., Wang, Z.-X.: Upper bound of the fully entangled fraction. Phys. Rev. A 78, 032332 (2008)

    Article  ADS  Google Scholar 

  26. Steffen, M., et al.: State tomography of capacitively shunted phase qubits with high fidelity. Phys. Rev. Lett. 97, 050502 (2006)

    Article  ADS  Google Scholar 

  27. Liu, Y., et al.: Variational quantum circuits for quantum state tomography. Phys. Rev. A 101, 052316 (2020)

    Article  ADS  Google Scholar 

  28. Xue, S., et al.: Variational quantum process tomography of unitaries. Phys. Rev. A 105, 032427 (2022)

    Article  ADS  Google Scholar 

  29. Kingma, D.P., Adam, J.B.: A method for stochastic optimization. arXiv:1412.6980 (2014)

  30. Skolik, A., et al.: Layerwise learning for quantum neural networks. Quantum Mach. Intell. 3, 5 (2021)

    Article  Google Scholar 

  31. Paddle Quantum: . (2020)

  32. Ma, Y., Yu, D., Wu, T., Wang, H.: PaddlePaddle: An Open-Source Deep Learning Platform from Industrial Practice Frontiers of Data and Domputing. 1, 105 (2019)

  33. Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid Quantum-Classical algorithms. Advanced Quantum Technologies 2, 1900070 (2019)

    Article  Google Scholar 

  34. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)

    Article  ADS  Google Scholar 

  35. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  36. Albeverio, S., Fei, S.M., Yang, W.L.: Optimal teleportation based on bell measurements. Phys. Rev A 66, 012301 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shandong Provincial Natural Science Foundation for Quantum Science No.ZR2021LLZ002, and the Fundamental Research Funds for the Central Universities No.22CX03005A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XQ., Qu, YD., Wang, J. et al. Solving the Fully Entangled Fraction on Near-Term Quantum Devices. Int J Theor Phys 62, 69 (2023). https://doi.org/10.1007/s10773-023-05328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05328-6

Keywords

Navigation