Skip to main content
Log in

Nonmaximally Entangled States can be Better for Quantum Correlation Distribution and Storage

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

For carrying out many quantum information protocols entanglement must be established in advance between two distant parties. Practically, inevitable interaction of entangled subsystems with their environments during distribution and storage will result in degradation of entanglement. Here we show that some partially entangled states are more robust than maximally entangled states in terms of the residual quantum correlation measured by concurrence, fully entangled fraction, and quantum discord, respectively. This phenomenon leads to the fact that nonmaximally entangled states can outperform maximally entangled states for quantum correlation distribution and storage under the amplitude damping. These results can also educe a noticeable consequence that the ordering of states under quantum correlation monotones can be reversed even by local trace-preserving and completely positive maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Rev. Mod. Phys. 84, 777–838 (2012)

    Article  ADS  Google Scholar 

  2. Kraus, B., Cirac, J. I.: Phys. Rev. Lett. 92, 013602 (2004)

    Article  ADS  Google Scholar 

  3. Paternostro, M., Son, W., Kim, M.S.: Phys. Rev. Lett. 92, 197901 (2004)

    Article  ADS  Google Scholar 

  4. Guo, Y.: Int. J. Theor. Phys. 51, 2954–2959 (2012)

    Article  MATH  Google Scholar 

  5. Slodička, L., Hétet, G., Röck, N., Schindler, P., Hennrich, M., Blatt, R.: Phys. Rev. Lett. 110, 083603 (2013)

    Article  ADS  Google Scholar 

  6. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  7. Qiu, T.H., Yang, G.J.: Int. J. Theor. Phys. 52, 2530–2536 (2013)

    Article  MathSciNet  Google Scholar 

  8. Sangouard, N., Simon, C, de Riedmatten, H., Gisin, N. Rev. Mod. Phys. 83, 33–80 (2011)

    Article  ADS  Google Scholar 

  9. Duan, L.M., Monroe, C.: Rev. Mod. Phys. 82, 1209–1224 (2010)

    Article  ADS  Google Scholar 

  10. Bellomo, B., Lo Franco, R., Compagno, G.: Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  11. Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  13. Wang, B., Xu, Z.Y., Chen, Z.Q., Feng, M.: Phys. Rev. A 81, 014101 (2010)

    Article  ADS  Google Scholar 

  14. Li, J.G., Zou, J., Shao, B.: Phys. Rev. A 82, 042318 (2010)

    Article  ADS  Google Scholar 

  15. Huang, P., Zhu, J., Qi, X.X., He, G.Q., Zeng, G.H.: Quantum Inf. Process 11, 1845–1865 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Zhang, J.: Quantum Inf. Process 12, 1627–1636 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Shang, C.J., Chen, T., Liu, J.B., et al. Int. J. Theor. Phys. 49, 717–727 (2010)

    Article  Google Scholar 

  18. Ji, Y.H., Wang, Z.S., Hu, J.J.: Int. J. Theor. Phys. 50, 644–653 (2011)

    Article  MATH  Google Scholar 

  19. Konrad, T., De Melo, F., Tiersch, M., et al.: Nature Phys. 4, 99–102 (2008)

    Article  ADS  Google Scholar 

  20. Xu, J.S., Li, C.F., Xu, X.Y., et al.: Phys. Rev. Lett. 103, 240502 (2009)

    Article  ADS  Google Scholar 

  21. Tiersch, M., de Melo, F., Konrad, T., Buchleitner, A.: Quantum Inf. Process. 8, 523–534 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  23. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  24. Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Rev. A 60, 1888–1898 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  26. Henderson, L., Vedral, V.: J. Phys. A 34, 6899–6905 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Bennett, C.H., Brassard, G., Popescu, S., et al. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  28. Bandyopadhyay, S., Ghosh, A.: Phys. Rev. A 86 (R), 020304 (2012)

    Article  ADS  Google Scholar 

  29. Lo Franco, R., Bellomo, B., Maniscalco, S., Compagno, G.: Int. J. Mod. Phys. B 27, 1345053 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  31. Dakić, B., Lipp, Y.O., Ma, X., et al.: Nature Phys. 8, 666–670 (2012)

    Article  ADS  Google Scholar 

  32. Brodutch, A.: Phys. Rev. A 88, 022307 (2013)

    Article  ADS  Google Scholar 

  33. Brodutch, A., Terno, D.R. Phys. Rev. A 83 (R), 010301 (2011)

    Article  ADS  Google Scholar 

  34. Yin, J., Ren, J.G., Lu, H., et al.: Nature 488, 185 (2012)

    Article  ADS  Google Scholar 

  35. Yu, T., Eberly, J.H.: Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  36. Bellomo, B., Lo Franco, R., Compagno, G.: Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  37. Almeida, M.P, de Melo, F., Hor-Meyll, M., et al.: Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  38. Lo Franco, R., DArrigo, A., Falci, G., Compagno, G., Paladino, E.: Phys. Scr. T147, 014019 (2012)

    Article  ADS  Google Scholar 

  39. Badziag, P., Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Rev. A 62, 012311 (2000)

    Article  ADS  Google Scholar 

  40. Bandyopadhyay, S.: Phys. Rev. A 65, 022302 (2002)

    Article  ADS  Google Scholar 

  41. Verstraete, F., Verschelde, H.: Phys. Rev. Lett. 90, 097901 (2003)

    Article  ADS  Google Scholar 

  42. Verstraete, F., Verschelde, H.: Phys. Rev. A 66, 022307 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  43. Vidal, G., Werner, R.F.: Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  44. Luo, S.: Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  45. Ali, M., Rau, A.R.P., Alber, G.: Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  46. Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Phys. Rev. A 84, 042313 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (No. 11004050 and No. 11375060), the China Postdoctoral Science Foundation funded project (No. 2013T60769), and the Hunan Provincial Applied Basic Research Base of Optoelectronic Information Technology (No. GDXX007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Wen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XW., Tang, SQ., Yuan, JB. et al. Nonmaximally Entangled States can be Better for Quantum Correlation Distribution and Storage. Int J Theor Phys 54, 1461–1469 (2015). https://doi.org/10.1007/s10773-014-2343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2343-y

Keywords

Navigation