Skip to main content
Log in

Simultaneous Dense Coding Protocol for Three Receivers Under the Influence of Noisy Quantum Channels

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A novel locking operator and a simultaneous dense coding protocol for three receivers based on Bell states are proposed. The locking operator can lock the quantum entanglement channels and the security of the simultaneous dense coding protocol has also been analyzed. Secondly, we calculate the quantum cost of the simultaneous dense coding protocol based on quantum circuit. Furthermore, four success probabilities of the simultaneous dense coding under the six kinds of noise are calculated. We find that success probabilities of the three-party receivers are independent of the encode message. Our proposed simultaneous dense coding protocol may provide some potential applications in quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liao, S.K., Cai, W.Q., Liu, W.Y., et al.: And satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017)

    Article  ADS  Google Scholar 

  2. Xu, F., Ma, X., Zhang, Q., et al.: And Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 025002, 92 (2020)

    MathSciNet  Google Scholar 

  3. Bennett, C.H., Wiesner S J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Hao, J.C., Feng, L.C., Guo, G.C.: Probabilistic dense coding and teleportation. Phys. Lett. A. 278, 113–117 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A. 72, 0123297 (2005)

    Article  Google Scholar 

  6. Liu, X.S., Long, G.L., Tong, D.M., et al.: General scheme for superdense coding between multiparties. Phys. Rev. A. 65, 022304 (2002)

    Article  ADS  Google Scholar 

  7. Hu, X.M., Guo, Y., Liu, B.H., et al.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4, aat9304 (2018)

    Article  ADS  Google Scholar 

  8. Braunstein, S.L., Kimble, H.J.: Dense coding for continuous variables. Phys. Rev. A. 61, 042302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zhang, J., Peng, K.: Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state. Phys. Rev. A. 62, 064302 (2000)

    Article  ADS  Google Scholar 

  10. Situ, H.Z., Qiu, D.W.: Simultaneous dense coding. J. Phys. A: Math. Theor. 43, 055301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Situ, H.Z.: Controlled simultaneous teleportation and dense coding. Int. J. Theor. Phys. 53, 1003–1009 (2014)

    Article  MATH  Google Scholar 

  12. Yang, X., Bai, M.Q., Cui, Z.Z., Mo, Z.W.: Secure simultaneous dense coding χ-type entangled state. Quantum Inf. Process. 17, 261 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Zhang, C., Situ, H.Z., Li, Q., He, G.P.: Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states. Int. J. Quantum Inf. 14, 1650023 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A. 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  15. Singh, D., Kumar, S., Behera, B.K.: Complexity analysis of quantum teleportation via different entangled channels in the presence of noise. IET Quantum Communication:1–16 (2022)

  16. Qiu, X.Y., Chen, L.: Quantum cost of dense coding and teleportation. Phys. Rev. A 105, 062451 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  17. Mohamed, A.-B.A., Hessian, H.A., Eleuch, H.: Generation of quantum coherence in two-qubit cavity system: qubit-dipole coupling and decoherence effects. Phys. Scr. 95, 075104 (2020)

    Article  ADS  Google Scholar 

  18. Ahadpour, S., Mirmasoudi, F.: Dynamics of quantum correlations for different types of noisy channels. Opt. Quant. Electron. 52, 369 (2020)

    Article  Google Scholar 

  19. Mirmasoudi, F., Ahadpour, S.: Dynamics of super quantum discord and optimal dense coding in quantum channels. J. Phys. A: Math. Theor. 51, 345302 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dolatkhah, H., Haddadi, S., Hu, M.L., et al.: Characterizing tripartite entropic uncertainty under random telegraph noise. Quantum Inf. Process. 21, 356 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  21. Liu, W.B., Li, C.L., Xie, Y.M., Weng, C.X., et al.: Homodyne detection quadrature phase shift keying continuous-variable quantum key distribution with hHigh eExcess noise tolerance. PRX Quantum 040334, 2 (2021)

    Google Scholar 

  22. Wu, L., Chen, Y.H.: Three-stage quantum cryptography protocol under collective-rotation noise. Entropy 17, 2919–2931 (2015)

    Article  ADS  Google Scholar 

  23. Huang, Z.M., Zhang, C., Situ, H.Z.: Performance analysis of simultaneous dense coding protocol under decoherence. Quantum Inf. Process. 16, 227 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Huang, Z.M., Ye, Y.Y., Luo, D.R.: Simultaneous dense coding affected by fluctuating massless scalar field. Quantum Inf. Process. 17, 101 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Situ, H.Z., Huang, Z.M., Zou, X.F., Zheng, S.G.: The influence of correlated noise on the SDC protocol. Quantum Inf. Process. 19, 48 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information (2010 Cambridge University Press)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No.12204013), Anhui Provincial Natural Science Foundation (No.1708085MA10), the Quality Engineering Project of the Education Department of Anhui Province (Nos.2020jyxm1080, 2020szsfkc0548, 2020szsfkc0540), and the key Scientific Research Foundation of Anhui Provincial Education Department (KJ2021A0649 and KJ2019A0564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hua Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, ZN., Ling, YQ., Ding, CY. et al. Simultaneous Dense Coding Protocol for Three Receivers Under the Influence of Noisy Quantum Channels. Int J Theor Phys 62, 72 (2023). https://doi.org/10.1007/s10773-023-05307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05307-x

Keywords

Navigation