Skip to main content
Log in

Teleportation of Masked Information

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this contribution, we investigated the possibility of teleporting classical/quantum masked information, which may be coded either in a single qubit or qutrit. For this purpose, different systems are used as quantum channels; two-qubit, three-qubit, two qutrit systems, and different protocols are applied. All the teleported masked information are retrieved as masked states at the receiver station. The number of operations that may be performed by the receiver are limited. It is shown that, one can teleport masked classical information with maximum fidelity, while for quantum information the maximization depends on the weight parameter of the teleported state and the used joint measurements. Teleporting the total masked state is better than teleporting its marginals, where the fidelity of total masked state is maximum. However, the fidelity of teleporting masking quantum information via three qubit systems may be maximized by controlling the weight of the initial masked state and the polarization of the mediator. In some cases, the receiver need to diagonalize the final teleported state to maximize its fidelity, and consequently reduces the required local operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Zeilinger, A.: Quantum teleportation, onwards and upwards. Nat. Phys. 14(1), 3–4 (2018)

    Article  Google Scholar 

  3. Breukelen, R.v., Papadodimas, K.: Quantum teleportation through time-shifted AdS wormholes. J. High Energy Phys. 2018(8) (2018)

  4. Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62(2), 022307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Lu, H., Guo, G.c.: Teleportation of a two-particle entangled state via entanglement swapping. Phys. Lett. A 276(5-6), 209–212 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Fang, J., Lin, Y., Zhu, S., Chen, X.: Probabilistic teleportation of a three-particle state via three pairs of entangled particles. Phys. Rev. A 67 (1), 014305 (2003)

    Article  ADS  Google Scholar 

  7. Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5(1), 136 (2003)

    Article  ADS  Google Scholar 

  8. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71(3), 032303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96(6), 060502 (2006)

    Article  ADS  Google Scholar 

  10. Chen, P.X., Zhu, S.Y., Guo, G.C.: General form of genuine multipartite entanglement quantum channels for teleportation. Phys. Rev. A 74(3), 032324 (2006)

    Article  ADS  Google Scholar 

  11. Barrett, M.D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Deterministic quantum teleportation of atomic qubits. Nature 429(6993), 737–739 (2004)

    Article  ADS  Google Scholar 

  12. Riebe, M., Hȧffner, H., Roos, C.F., Hȧnsel, W., Benheim, J., Lancaster, G.P.T., Kȯrber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429(6993), 734–737 (2004)

    Article  ADS  Google Scholar 

  13. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  ADS  Google Scholar 

  14. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 1997 390:6660 390 (6660), 575–579 (1997)

    MATH  Google Scholar 

  15. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gorbachev, V.N., Trubilko, A.I.: Quantum teleportation of EPR pair by three-particle entanglement. J. Exp. Theor. Phys. 91(5), 894–898 (1999)

    Article  ADS  Google Scholar 

  17. Shi, B.S., Tomita, A.: Teleportation of an unknown state by W state. Phys. Lett. A 296(4-5), 161–164 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hu, M.-L.: Robustness of Greenberger–Horne–Zeilinger and W states for teleportation in external environments. Phys. Rev. Lett. 375, 922–926 (2011)

    Article  Google Scholar 

  19. Chamoli, A., Bhandari, C.M.: Teleportation of unknown state by qutrits. Int. J. Quantum Inf. 6(2), 369–378 (2011)

    Article  MATH  Google Scholar 

  20. Metwally, N.: Entanglement routers Via wireless quantum network based on arbitrary two-qubit systems. Phys. Scr. 89(8pp), 125103 (2014)

    Article  ADS  Google Scholar 

  21. Nguyen, B.A.: Teleportation of two-quNit entanglement: exploiting local resources. Phys. Lett. A 341(1-4), 9–14 (2005)

    Article  MATH  Google Scholar 

  22. Ali, L., Islam, R.-U., Ikram, M., Abbas, T., Ahmad, I.: Teleportation of atomic external states on the internal degrees of freedom. Quantum Inf. Process. 21, 55 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Ali, L., Islam, R.U., Ikram, M., Abbas, T., Ahmad, I.: Hyperentanglement teleportation through external momenta states. J. Phys. B: At. Mol. Opt. Phys. 54, 235501 (2021)

    Article  ADS  Google Scholar 

  24. -Biao, Z.S.: Teleportation of quantum states through mixed entangled pairs. Chin. Phys. Lett. 23, 2356 (2006)

    Article  ADS  Google Scholar 

  25. Metwally, N.: Usefulness classes of travelling entangled channels in nonintertial frames. Int. J. Mod Phys. B. 27(28), 1350155 (2013)

    Article  ADS  MATH  Google Scholar 

  26. Metwally, N.: Estimation of teleported and gained parameters in a non-inertial frame. Laser Phys. Lett. 14, 0452102 (2017)

    Google Scholar 

  27. Metwally, N.: Entanglement and teleportation via decohered multi-qubit systems. Ann. Phys. 351, 404–713 (2014)

    Article  MathSciNet  Google Scholar 

  28. Modi, K., Pati, A.K., Sen, A., Sen, U.: Masking quantum information is impossible. Phys. Rev. Lett. 120(23) (2018)

  29. Li, M.S., Wang, Y.L.: Masking quantum information in multipartite scenario. Phys. Rev. A 98(6) (2018)

  30. Abdelwahab, A.G., Ghwail, S.A., Metwally, N., Mahran, M.H., Obada, A.S.F.: The concealment of accelerated information is possible. Quantum Inf. Process. 20(2), 71 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Abdelwahab, A.G., Ghwail, S.A., Metwally, N., Mahran, M.H., Obada, A.S.F.: The accelerated gisin state: its non-locality, quantum correlations and efficiency to perform quantum masking. Quantum Inf. Comput. 21(15-16), 1274–1295 (2021)

    MathSciNet  Google Scholar 

  32. Liu, Z.-H., Liang, X.-B., Sun, K., Li, Q., Meng, Y., Yang, M., Li, B., Chen, J.-L., Xu, J.-S., Li, C.-F., Guo, G.-C.: Photonic implementation of quantum information masking. Phys. Rev. Lett. 126, 170505 (2021)

    Article  ADS  Google Scholar 

  33. Zhang, R.-Q., Hou, Z., Li, Z., Zhu, H., Xiang, G.-Y., Li, C.-F., Guo, G.-C.: Experimental masking of real quantum states. Phys. Rev. Appl. 16, 024052 (2021)

    Article  ADS  Google Scholar 

  34. Cola, M.M., Paris, M.G.A.: Teleportation of bipartite states using a single entangled pair. Phys. Lett. A 337, 10–16 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Li, D.-F., Wang, R.-J., Baagyere, E.: Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state. Quantum Inf. Process. 18, 147 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Zhang, G.F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction. Phys. Rev. A - At. Mol. Opt. Phys. 75(3), 034304 (2007)

    Article  ADS  Google Scholar 

  37. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their constructive reports which have helped us to improve our manuscript in different aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Metwally.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelwahab, A.G., Ghwail, S.A., Metwally, N. et al. Teleportation of Masked Information. Int J Theor Phys 62, 66 (2023). https://doi.org/10.1007/s10773-023-05275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05275-2

Keywords

Navigation