Skip to main content
Log in

On the Dynamics of Correlations in 2 ⊗ 3 Heisenberg Chains with Inhomogeneous Magnetic Field

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The majority of entanglement measurement research concentrates on systems that can be represented by two interacting qubits. This is because there aren’t many researches that show analytical calculations for entanglement in systems with spin s > 1/2. In ref. (S.L.L. Silva Int. J. Theor. Phys. 60, 3861, 2021) the author used distance between states to study thermal entanglement in 2 ⊗ 3 Heisenberg chain. In this work various dynamic correlations as well as quantum Fisher information phenomena are studied in a 2 ⊗ 3 Heisenberg chain. First, we introduce our model for spin-\(\frac {1}{2}\) and spin-1 located in inhomogeneous magnetic field, then we obtain the eigenvalues and eigenvectors of Hamiltonian to deduce the thermal state matrix. On the other hand, the dynamic behavior of the system is studied by considering the system initially prepared in the thermal state. Also, the influence of both nonuniform and uniform external magnetic field on the degree of entanglement between the spin-\(\frac {1}{2}\) and spin-1 are discussed through some correlation functions, namely, concurrence, von Neumann entropy and geometric quantum discord. Finally we study the quantum Fisher information phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are cited at relevant places within the text as references.

References

  1. Silva, S.L.L.: . Int. J. Theor. Phys. 60, 3861 (2021)

    Article  Google Scholar 

  2. Wootters, W.K.: . Quantum Inf Comput. 1,1, 27–44 (2001)

    Google Scholar 

  3. Vedral, V.: . Nat. Phys. 10(4), 256–258 (2014)

    Article  Google Scholar 

  4. Paulo Mendonça, E.M.F., et al.: . Phys. Rev. A 78, 5 (2008)

    Google Scholar 

  5. Qi, X., Ting, G., Yan, F.: . J. Phys. A Math. Theor. 50, 28 (2017)

    Article  Google Scholar 

  6. Kumar, S, Pandey, A.: . Math. Theor. 44, 44 (2011)

    Article  Google Scholar 

  7. Pappalardi, S., et al.: . Theory Exp. 2017, 5 (2017)

    Google Scholar 

  8. Nguyen, H.C., Bernards, F.: . Eur. Phys. J. D 74, 4 (2020)

    Article  Google Scholar 

  9. Barker, P.F., et al.: arXiv:2203.00038 (2022)

  10. Silva, S.L.: Stud. Quantum Math. Found 5 (2017)

  11. Wieśniak, M., Vedral, V., Časlav, B.: . New J. Phys. 7, 1 (2005)

    Article  Google Scholar 

  12. Del Cima, O.M., Franco, D.H.T., da Silva, S.L.L.: . Math. Found. 3, 1 (2016)

    Google Scholar 

  13. Del Cima, O.M., Franco, D.H.T., Silva, M.M.: . Math. Found. 6, 2 (2019)

    Google Scholar 

  14. Habiballah, N., et al.: . Modern Phys. Lett. A 35, 17 (2020)

    Article  Google Scholar 

  15. Tursun, M., et al.: . Chin. Phys. Lett. 30, 3 (2013)

    Article  Google Scholar 

  16. Ashouri, A., et al.: . Ann. Phys. 532, 8 (2020)

    Article  Google Scholar 

  17. Inui, Y., Yamamoto, Y.: . Phys. Rev. A 102, 6 (2020)

    Google Scholar 

  18. Grimaudo, R., Messina, A., Nakazato, H.: . Phys. Rev. A 94, 2 (2016)

    Article  Google Scholar 

  19. Marian, P., Ghiu, I., Tudor, A.: . Marian Phys. Scr. 90, 7 (2015)

    Google Scholar 

  20. Isar, A., Mihaescu, T.: . Eur. Phys. J. D 71, 6 (2017)

    Article  Google Scholar 

  21. Khedif, Y., Daoud, M.: . Modern Phys. Lett. A 36, 11 (2021)

    Google Scholar 

  22. Tao, C., et al.: . Commun. Theor. Phys. 53, 6 (2010)

    Article  Google Scholar 

  23. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall, Upper Saddle River (1993)

    MATH  Google Scholar 

  24. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  25. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  26. El Anouz, K., El Allati, A., El Baz, M.: . Opt. Soc. Amer. B. 37, 1 (2020)

    Article  Google Scholar 

  27. El Anouz, K., El Allati, A., Metwally, N.: . Phys. Lett. A. 384, 5 (2019)

    Google Scholar 

  28. Hauke, P., Heyl, M., Tagliacozzo, L., Zoller, P.: Nat. Phys. 12 (2016)

  29. Mathew, G., Silva, S.L.L., et al.: Phys. Rev. Res. 2 (2020)

  30. Zhukov, A.A., Maslennikov, G.A., Chekhova, M.V.: . JETP Lett. 76, 10 (2002)

    Article  Google Scholar 

  31. Thew, R.T., Acin, A., Zbinden, H., Gisin, N: . Quant. Inf. Proc. 4, 2 (2004)

    Google Scholar 

  32. Das, R., Chakraborty, S., Rukmani, K., Kumar, A.: . Phys. Rev. A 70, 012314 (2004)

    Article  ADS  Google Scholar 

  33. Klimov, A.B., Guzman, R., Retamal, J.C., Saavedra, S.: . Phys. Rev. A 67, 062313 (2003)

    Article  ADS  Google Scholar 

  34. Ralph, T.C., et al.: . Phys. Rev. A 75, 022313 (2007)

    Article  ADS  Google Scholar 

  35. Groblacher, S., et al.: . J. New. Phys. 8, 75 (2006)

    Article  Google Scholar 

  36. Spekkens, R.W., Rudolph, T.: . Phys. Rev. A 65, 012310 (2001)

    Article  ADS  Google Scholar 

  37. Groblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A.: . J. New. Phys. 8, 75 (2006)

    Article  Google Scholar 

  38. Lanyon, B.P., et al.: . Phys. Rev. Lett 100, 060504 (2008)

    Article  ADS  Google Scholar 

  39. Ann, K., Jaeger, G.: . Phys. Lett. A 372, 579 (2008)

    Article  ADS  Google Scholar 

  40. Li, B., Yu, Z.H., Fei, S.M.: . Sci. Report. 3, 2594 (2013)

    Article  Google Scholar 

  41. Zhua, G.-Q., Zhao, X., Li, Y.-Q.: . Eur. Phys. J.B. 44, 359 (2005)

    Article  ADS  Google Scholar 

  42. You-quan, L.I., Guo-qiang, Z.H.U.: . Front. Phys. China 3, 3 (2008)

    Google Scholar 

  43. Najarbashi, G., Balazadeh, L., Tavana, A.: . Int. J. Theor. Phys. 57, 95 (2018)

    Article  Google Scholar 

  44. Daki, C., Vedral, V., Brukner, C.: . Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  45. Karpat, G., Gedik, Z.: . Phys. Lett. A 375, 4166 (2011)

    Article  ADS  Google Scholar 

  46. Hu, M.-L., Hu, X., Wang, J.-C., Peng, Y., Zhang, Y.-R., Fan, H.: . Phys. Rep. 762, 1 (2018)

    ADS  Google Scholar 

  47. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall Inc., Upper Saddle River (1993)

    MATH  Google Scholar 

  48. Genoni, M.G., Olivares, S, Paris, M.G.A.: . Phys. rev. Lett. 106(15), 153603 (2011)

    Article  ADS  Google Scholar 

  49. El Anouz, K., et al.: . JOSA B 39(4), 979–989 (2022)

    Article  ADS  Google Scholar 

  50. Araki, H., Lieb, E.H.: . Commun. Math. Phys. 18, 160 (1970)

    Article  ADS  Google Scholar 

  51. Anaya-Contreras, J.A., Moya-Cessa, H.M., Zúñiga-Segundo, A.: . Entropy 21, 49 (2019)

    Article  ADS  Google Scholar 

  52. Tao, C., SHAn, C.-J, et al.: Commun. Theor. Phys. 53 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. S. Ibrahim.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Concurrence Vector

First, as mentioned previously, by using the basis of spin-1 (eigenvectors of Sz)

$$ |1\rangle=\left( \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right), |0\rangle=\left( \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) |-1\rangle=\left( \begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) $$
(A1)

and, by using (3.9) together with (3.31), we get

$$ \hat{R}_{1}=\left( \begin{array}{cccccc} \rho_{11} \rho_{55}^{*} & 0 & 0 & 0 & 0 & 0 \\ 0 & |\rho_{24}|^{2}+\rho_{22} \rho_{44}^{*} & 0 & \rho_{24} \rho_{22}^{*}+\rho_{22} \rho_{42}^{*} & 0 & 0 \\ 0 & 0 & 0 & 0 & \rho_{11} \rho_{35} & 0 \\ 0 & \rho_{44} \rho_{24}^{*}+\rho_{42} \rho_{44}^{*} & 0 & \rho_{44} \rho_{22}^{*}+|\rho_{42}|^{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \rho_{11} \rho_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) $$
(A2)

with nonzero eigenvalues

$$ \begin{array}{@{}rcl@{}} {\mu_{1}^{1}}& = &({\mu_{1}^{2}})^{*}=\rho_{11} \rho_{55}\\ \mu_{1}^{3,4}& = & \frac{\rho_{44} \rho_{22}^{*} + \rho_{22} \rho_{44}^{*} + |\rho_{24}|^{2} + |\rho_{42}|^{2}\!\pm\!\sqrt{(\rho_{44} \rho_{22}^{*} + \rho_{22} \rho_{44}^{*} + |\rho_{24}|^{2} + |\rho_{42}|^{2})^{2} - 4|\rho_{24}\rho_{42} - \rho_{22} \rho_{44}|^{2}}}{2} \end{array} $$
(A3)

Also,

$$ \hat{R}_{2}=\left( \begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \rho_{22} \rho_{66} & 0 & 0 & 0 & 0 \\ 0 & 0 & |\rho_{35}|^{2}+\rho_{33} \rho_{55}^{*} & 0 & \rho_{35} \rho_{33}^{*}+\rho_{33} \rho_{53}^{*} & 0 \\ 0 & \rho_{42} \rho_{66} & 0 & 0 & 0 & 0 \\ 0 & 0 & \rho_{55} \rho_{35}^{*}+\rho_{53} \rho_{55}^{*} & 0 & \rho_{55} \rho_{33}^{*}+|\rho_{53}|^{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \rho_{66} \rho_{22}^{*} \end{array} \right) $$
(A4)

with nonzero eigenvalues

$$ \begin{array}{@{}rcl@{}} {\mu_{2}^{1}}& = &({\mu_{2}^{2}})^{*}=\rho_{22} \rho_{66}\\ \mu_{2}^{3,4}& = & \frac{\rho_{55} \rho_{33}^{*} + \rho_{33} \rho_{55}^{*} + |\rho_{35}|^{2} + |\rho_{53}|^{2}\!\pm\!\sqrt{(\rho_{55} \rho_{33}^{*} + \rho_{33}\rho_{55}^{*} + |\rho_{35}|^{2} + |\rho_{53}|^{2})^{2} - 4|\rho_{35}\rho_{53} - \rho_{33} \rho_{55}|^{2}}}{2} \end{array} $$
(A5)

and,

$$ \hat{R}_{3}=\left( \begin{array}{cccccc} \rho_{11} \rho_{66} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \rho_{24} \rho_{33}^{*} & 0 & 0 \\ 0 & 0 & \rho_{33} \rho_{44}^{*} & 0 & 0 & 0 \\ 0 & 0 & 0 & \rho_{44} \rho_{33}^{*} & 0 & 0 \\ 0 & 0 & \rho_{53} \rho_{44}^{*} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \rho_{11} \rho_{66} \end{array}\right) $$
(A6)

with nonzero eigenvalues,

$$ \begin{array}{@{}rcl@{}} {\mu_{3}^{1}}&=&{\mu_{3}^{2}}=\rho_{11} \rho_{66}\\ {\mu_{3}^{3}}&=&\left( {\mu_{3}^{4}}\right)^{*}=\rho_{33} \rho_{44}^{*} \end{array} $$
(A7)

Appendix B: Geometric Quantum Discord

By using (3.9) and, we recall that

$$ \begin{array}{@{}rcl@{}} x_{1}&=&x_{2}=0, \qquad x_{3}=\rho_{11}+\rho_{22}+\rho_{33}-\rho_{44}-\rho_{55}-\rho_{66} \end{array} $$
(B1)
$$ \begin{array}{@{}rcl@{}} r_{11}&=&r_{22}=\frac{1}{\sqrt{2}}\left( \rho_{24}+\rho_{42}+\rho_{35}+\rho_{53}\right)\\ r_{21}&=&r_{12}^{*}=-\frac{i}{\sqrt{2}}\left( \rho_{24}+\rho_{35}-\rho_{42}-\rho_{53}\right)\\ r_{33}&=&\rho_{11}+\rho_{66}-\rho_{33}-\rho_{44} \end{array} $$
(B2)

then, we get

$$ \hat{X}=\left( \begin{array}{cccccc} 0 \\ 0\\ x_{3} \end{array}\right) $$
(B3)

and

$$ \hat{R}=\left( \begin{array}{cccccc} r_{11} & r_{12} & 0 \\ r_{12}^{*} & r_{22} & 0 \\ 0 & 0 &r_{33} \end{array} \right) $$
(B4)

So, we obtain

$$ \hat{K}=\left( \begin{array}{cccccc} k_{1} & 0 & 0 \\ 0 & k_{1} & 0 \\ 0 & 0 &k_{2} \end{array} \right)\\ $$
(B5)

where, \(k_{1}=\frac {1}{2}(\rho _{24}+\rho _{35})(\rho _{42}+\rho _{53})\) and \(k_{2}=K_{\max \limits }=\frac {1}{6}(2(\rho _{11}+\rho _{22}+\rho _{33})-1)^{2}+\frac {1}{4}(\rho _{11}+\rho _{66}-\rho _{33}-\rho _{44})\) From all of the above we can deduce that

$$ \begin{array}{@{}rcl@{}} D_{G}(\rho)=2 k_{1}=.(\rho_{24}+\rho_{35})(\rho_{42}+\rho_{53}). \end{array} $$
(B6)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, T.A.S., Amin, M.E. & Salah, A. On the Dynamics of Correlations in 2 ⊗ 3 Heisenberg Chains with Inhomogeneous Magnetic Field. Int J Theor Phys 62, 14 (2023). https://doi.org/10.1007/s10773-022-05258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05258-9

Keywords

Navigation