Skip to main content
Log in

Effect of the Ensemble of Cold Atoms Position in the Brillouin Zone on the Optical Bistability and Entanglement Dynamics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the dynamics of an ensemble of cold atoms coupled to light through radiation pressure in an optical lattice. We show that the steady-state displacement of the atomic ensemble shows bistable behavior which can be tuned by the position of the cold atoms in the Brillouin zone. Further, we describe a scheme to transfer the quantum state of the light field to the atomic field of two ensembles of cold atoms inside two independent optical cavities. This method leads to quantum entanglement which can be used in implementing quantum communication and computing. An Einstein-Podolsky-Rosen (EPR) state may be achieved with a judicious choice of parameters for our system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Braginsky, V.B., Manukin, A.B.: Sov. Phys. JETP 52, 986 (1967)

    Google Scholar 

  2. Kippenberg, T.J., et al.: Phys. Rev. Lett. 95, 033901 (2005)

    Article  ADS  Google Scholar 

  3. Arcizet, O., et al.: Nature (London) 444, 71 (2006)

    Article  ADS  Google Scholar 

  4. Gigan, S., et al.: Nature (London) 444, 67 (2006)

    Article  ADS  Google Scholar 

  5. Mahajan, S., Kumar, T., Bhattacherjee, A.B., Mohan, M.: Rev. Phys. A 87, 013621 (2013)

    Article  Google Scholar 

  6. Mahajan, S., Aggarwal, N., Bhattacherjee, A.B., Mohan, M.: J. Phys. B At. Mol. Opt. Phys. 46, 085301 (2013)

    Article  ADS  Google Scholar 

  7. Dorsel, A., et al.: Phys. Rev. Lett. 51, 1550 (1983)

    Article  ADS  Google Scholar 

  8. Gupta, S., Moore, K.L., Murch, K.W., Stamper-Kurn, D.M.: Phys. Rev. Lett. 99, 213601 (2007)

    Article  ADS  Google Scholar 

  9. Mancini, S., Tombesi, P.: Phys. Rev. A 49, 4055 (1994)

    Article  ADS  Google Scholar 

  10. Fabre, C., et al.: Phys. Rev. A 49, 1337 (1994)

    Article  ADS  Google Scholar 

  11. Clerk, A.A., Marquardt, F., Harris, J.G.E.: Phys. Rev. Lett. 104, 213603 (2010)

    Article  ADS  Google Scholar 

  12. Purdy, T.P., et al.: Phys. Rev. Lett. 105, 133602 (2010)

    Article  ADS  Google Scholar 

  13. Bhattacherjee, A.B.: Phys. Rev. A 80, 043607 (2009)

    Article  ADS  Google Scholar 

  14. Werner, R.F.: Quantum Information Processing (Springer Tracts in Modern Physics), vol. 173. Springer, Berlin (2001)

    Google Scholar 

  15. Sorensen, A., et al.: (Nature:London) 409, 63 (2001)

    ADS  Google Scholar 

  16. Chen, J., et al.: Phys. Lett. A 360, 429 (2007)

    Article  ADS  Google Scholar 

  17. You, L.: Phys. Rev. Lett. 90, 030402 (2003)

    Article  ADS  Google Scholar 

  18. Fadel, M., Usui, A., Huber, M., Friis, N., Vitagliano, G.: Phys. Rev. Lett. 127, 010401 (2021)

    Article  ADS  Google Scholar 

  19. Isoard, M., Milazzo, N., Pavloff, N.: Olivier Giraud Phys. Rev. A 104, 063302 (2021)

    Article  ADS  Google Scholar 

  20. Barzanjeh, S., Xuereb, A., Gröblacher, S., Paternostro, M.: Cindy A. Regal and Eva M. Weig, Nat. Phys. 18, 15 (2022)

    Google Scholar 

  21. Bougouffa, S., Al-Hmoud, M.: Int. J. Theor. Phys. 59, 1699 (2020)

    Article  Google Scholar 

  22. Mancini, S., et al.: Phys. Rev. Lett. 88, 12 (2002)

    Article  Google Scholar 

  23. Pinard, M., et al.: Europhys. Lett. 72, 747 (2005)

    Article  ADS  Google Scholar 

  24. Zhang, J., et al.: J Phys. Rev. A 68, 013808 (2003)

    Article  ADS  Google Scholar 

  25. Gasenzer, T., et al.: Phys. Rev. A 65, 021605 (2002)

    Article  ADS  Google Scholar 

  26. Deb, B., Agarwal, G.S.: Phys. Rev. A 65, 063618 (2002)

    Article  ADS  Google Scholar 

  27. Parkins, A.S., Kimble, H.J.: e-print quant-ph/9909021(1999)

  28. Cirac, J.I., Zoller, P.: Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  29. Monroe, C., et al.: Phys. Rev. Lett. 75, 4714 (1995)

    Article  ADS  Google Scholar 

  30. King, B.E., et al.: Phys. Rev. Lett. 81, 1525 (1998)

    Article  ADS  Google Scholar 

  31. Turchette, Q.A., et al.: Phys. Rev. Lett. 81, 3631 (1998)

    Article  ADS  Google Scholar 

  32. Hughes, R.J., et al.: Phys. Rev. Lett. 77, 3240 (1996)

    Article  ADS  Google Scholar 

  33. Monroe, C., et al.: Science 272, 1131 (1996)

    Article  ADS  Google Scholar 

  34. Leibfried, D., et al.: Phys. Rev. Lett. 77, 4281 (1996)

    Article  ADS  Google Scholar 

  35. Meekhof, D.M., et al.: Phys. Rev. Lett. 76, 1796 (1996)

    Article  ADS  Google Scholar 

  36. Deutsch, I.H., Jessen, P.S.: Phys. Rev. A 57, 1972 (1998)

    Article  ADS  Google Scholar 

  37. Di Vincenzo, D.P.: Fortschr. Phys. 48, 771 (2000)

    Article  Google Scholar 

  38. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Nature (London) 414, 413 (2001)

    Article  ADS  Google Scholar 

  39. Bergmann, K., Theuer, H., Shore, B.W.: Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  40. Vitanov, N.V., Fleischhauer, M., Shore, B.W., Bergmann, K.: Adv. At., Mol., Opt. Phys. 46, 55 (2001)

    Article  ADS  Google Scholar 

  41. Parkins, A.S., Marte, P., Zoller, P., Kimble, H.J.: Phys. Rev. Lett. 71, 3095 (1993)

    Article  ADS  Google Scholar 

  42. Pellizzari, T., Gardiner, S.A., Cirac, J.I., Zoller, P.: Phys. Rev. Lett. 75, 3788 (1995)

    Article  ADS  Google Scholar 

  43. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  44. Maschler, C., Ritsch, H.: Phys. Rev. Lett. 95, 260401 (2005)

    Article  ADS  Google Scholar 

  45. Kumar, T., Bhattacherjee, A.B., Verma, P., Mohan, M.: J. Phys. B: At. Mol. Opt. Phys. 44, 065302 (2011)

    Article  ADS  Google Scholar 

  46. Treutlein, P., et al.: Phys. Rev. Lett. 99, 140403 (2007)

    Article  ADS  Google Scholar 

  47. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  48. Sarma, B., Sarma, A.K.: J. Opt. Soc. B 33, 1335 (2016)

    Article  ADS  Google Scholar 

  49. Gardiner, C.W.: Quantum Noise. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  50. Zhang, J., Peng, K., Samuel, L.: Braunstein Phys. Rev. A 68, 013808 (2003)

    Article  ADS  Google Scholar 

  51. Parkins, A.S., Kimble, H.J.: J. Opt. B: Quantum Semiclassical Opt. 1, 496 (1999)

    Article  ADS  Google Scholar 

  52. Giovannetti, V., Vitali, D.: Phys. Rev. A 63, 023812 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonam Mahajan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: 1

The following correlations are obeyed by the quantum noise operators for the input cavity field [52]:

$$ \begin{array}{@{}rcl@{}} &&\left\langle a_{in}(t)=0 \right\rangle \end{array} $$
(42)
$$ \begin{array}{@{}rcl@{}} &&<a_{in}(t)a_{in}(t^{\prime})>=<a_{in}^{\dagger}(t)a_{in}(t^{\prime})>=0, \end{array} $$
(43)
$$ \begin{array}{@{}rcl@{}} &&<a_{in}(t)a_{in}^{\dagger}(t^{\prime})>=\delta(t-t^{\prime}). \end{array} $$
(44)

Also, the quadrature noise operators for the input cavity field in the Fourier space obey the following correlations [52]:

$$ \begin{array}{@{}rcl@{}} &&<x_{1in}(\omega)x_{1in}(\omega^{\prime})>=<y_{1in}(\omega)y_{1in}(\omega^{\prime})>=2 \pi \delta(\omega + \omega^{\prime}), \end{array} $$
(45)
$$ \begin{array}{@{}rcl@{}} &&<x_{1in}(\omega)y_{1in}(\omega^{\prime})>=2 i \pi \delta (\omega +\omega^{\prime}), <y_{1in}(\omega)x_{1in}(\omega^{\prime})>=-2 i \pi \delta(\omega +\omega^{\prime}). \end{array} $$
(46)

Appendix: 2

The values of coefficients Ai,i = 1, 2, 3 in Eq. 41 are defined as follows:

$$ \begin{array}{@{}rcl@{}} A_{1}&=&\frac{2\pi}{({B_{1}^{2}}(0)+{C_{1}^{2}}(0))^{2}}({L_{1}^{2}}(0)+{F_{1}^{2}}(0)), \end{array} $$
(47)
$$ \begin{array}{@{}rcl@{}} A_{2}&=&\frac{4\pi}{\left[ ({B_{1}^{2}}(0)+{C_{1}^{2}}(0))({B_{2}^{2}}(0)+{C_{2}^{2}}(0))({\kappa_{1}^{2}}+{\Delta}_{d1}^{2})\right] }(\delta_{1}+\delta_{2}+\delta_{3}), \end{array} $$
(48)
$$ \begin{array}{@{}rcl@{}} A_{3}&=&\frac{2\pi}{\left[({B_{2}^{2}}(0)+{C_{2}^{2}}(0))^{2}({\kappa_{1}^{2}}+{\Delta}_{d1}^{2})^{2} \right] }(\delta_{4}+\delta_{5}+\delta_{6}+\delta_{7}+\delta_{8}+\delta_{9}+\delta_{10}+\delta_{11}), \end{array} $$
(49)

where,

$$ \begin{array}{@{}rcl@{}} \delta_{1}&=&\frac{g_{c1}\sqrt{2\kappa_{1}}\left( {\Delta}_{d1}L_{2}(0)-\kappa_{1}F_{2}(0)\right)\left( {L_{1}^{2}}(0)+{F_{1}^{2}}(0)\right)}{ {B_{1}^{2}}(0)+{C_{1}^{2}}(0)}, \end{array} $$
(50)
$$ \begin{array}{@{}rcl@{}} \delta_{2}&=&\left[({\kappa_{1}^{2}}-{\Delta}_{d1}^{2})L_{2}(0)+2{\Delta}_{d1}\kappa_{1}F_{2}(0)\right]L_{1}(0), \end{array} $$
(51)
$$ \begin{array}{@{}rcl@{}} \delta_{3}&=&\left[({\kappa_{1}^{2}}-{\Delta}_{d1}^{2})F_{2}(0)-2{\Delta}_{d1}\kappa_{1}L_{2}(0)\right]F_{1}(0), \end{array} $$
(52)
$$ \begin{array}{@{}rcl@{}} \delta_{4}&=&\frac{\left( g_{c1}\sqrt{2\kappa_{1}}\left( {\Delta}_{d1}L_{2}(0)-\kappa_{1}F_{2}(0)\right) \right)^{2}\left( {L_{1}^{2}}(0)+{F_{1}^{2}}(0)\right)}{\left( {B_{1}^{2}}(0)+{C_{1}^{2}}(0)\right)^{2}}, \end{array} $$
(53)
$$ \begin{array}{@{}rcl@{}} \delta_{5}&=&\frac{\left( g_{c1}\sqrt{2\kappa_{1}}\left( {\Delta}_{d1}F_{2}(0)+\kappa_{1}L_{2}(0)\right) \right)^{2}\left( {L_{1}^{2}}(0)+{F_{1}^{2}}(0)\right)}{\left( {B_{1}^{2}}(0)+{C_{1}^{2}}(0)\right)^{2}}, \end{array} $$
(54)
$$ \begin{array}{@{}rcl@{}} \delta_{6}&=&\left[({\kappa_{1}^{2}}-{\Delta}_{d1}^{2})L_{2}(0)+2{\Delta}_{d1}\kappa_{1}F_{2}(0)\right]^{2}, \end{array} $$
(55)
$$ \begin{array}{@{}rcl@{}} \delta_{7}&=&\left[({\kappa_{1}^{2}}-{\Delta}_{d1}^{2})F_{2}(0)-2{\Delta}_{d1}\kappa_{1}L_{2}(0)\right]^{2}, \end{array} $$
(56)
$$ \begin{array}{@{}rcl@{}} \delta_{8}&=&2\frac{g_{c1}\sqrt{2\kappa_{1}}\left( {\Delta}_{d1}L_{2}(0)-\kappa_{1}F_{2}(0)\right)\sqrt{\delta_{6}}L_{1}(0)}{ {B_{1}^{2}}(0)+{C_{1}^{2}}(0)}, \end{array} $$
(57)
$$ \begin{array}{@{}rcl@{}} \delta_{9}&=&2\frac{g_{c1}\sqrt{2\kappa_{1}}\left( {\Delta}_{d1}L_{2}(0)-\kappa_{1}F_{2}(0)\right)\sqrt{\delta_{7}}F_{1}(0)}{ {B_{1}^{2}}(0)+{C_{1}^{2}}(0)}, \end{array} $$
(58)
$$ \begin{array}{@{}rcl@{}} \delta_{10}&=&-2\frac{g_{c1}\sqrt{2\kappa_{1}}\left( {\Delta}_{d1}F_{2}(0)+\kappa_{1}L_{2}(0)\right)\sqrt{\delta_{6}}F_{1}(0)}{ {B_{1}^{2}}(0)+{C_{1}^{2}}(0)}, \end{array} $$
(59)
$$ \begin{array}{@{}rcl@{}} \delta_{11}&=&2\frac{g_{c1}\sqrt{2\kappa_{1}}\left( {\Delta}_{d1}F_{2}(0)+\kappa_{1}L_{2}(0)\right)\sqrt{\delta_{7}}L_{1}(0)}{ {B_{1}^{2}}(0)+{C_{1}^{2}}(0)}. \end{array} $$
(60)

In the above equations, we have used the values of Bj(ω), Cj(ω), Lj(ω) and Fj(ω) (j is 1 or 2) from the Eqs. 3538 at (\(\omega \rightarrow 0\)) in the main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, N., Mahajan, S. & Bhattacherjee, A.B. Effect of the Ensemble of Cold Atoms Position in the Brillouin Zone on the Optical Bistability and Entanglement Dynamics. Int J Theor Phys 62, 8 (2023). https://doi.org/10.1007/s10773-022-05250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05250-3

Keywords

Navigation