Skip to main content
Log in

Quantum Optimal Control for Pauli Operators Based on Spin-1/2 System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum control is an important field for quantum computing and quantum simulation. The key of quantum control is to realize quantum logic operators with high fidelity. In this work, based on spin-1/2 system, the optimal simulation of three Pauli logic operators are carried out by using quantum optimal control theory. Under Pauli z spin-presentation, the results show that under the given quantum initial state, the Pauli operators achieve the expected target quantum state with fidelity (0.9999). When the control pulse is applied on x-axis, the number of iterations required to optimize Pauli x operator to achieve the target state is the least, and the number of iterations required to optimize Pauli z operator is the most. In addition, the comparison shows that when the fidelity reach 0.9999, the population of the quantum final state can reach the ideal theoretical expectation. Besides, the optimization fidelity of Hadamard gate can also reach 0.9999 based on spin-1/2 system. Finally, the study on the phase evolution of quantum states shows that the phase difference between the initial and final quantum states of optimized Pauli x and Pauli z logic operator are π/2 respectively, and there is no phase difference between the final quantum state and the initial quantum state after the evolution of optimized Pauli y operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The data generated and/or analysed during the current study are not publicly available for legal/ethical reasons but are available from the corresponding author on reasonable request.

References

  1. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  2. Campbell, E.T., Terhal, B.M., Vuillot, C.: Roads towards fault-tolerant universal quantum computation. Nature 549, 173 (2017)

    Article  ADS  Google Scholar 

  3. Huang, C.-H., Goan, H.-S.: Robust quantum gates for stochastic time-varying noise. Phys. Rev. A 95, 062325 (2017)

    Article  ADS  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Information quantum and quantum computation. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Rabitz, H., Zhu, W.S.: Optimal control of molecular motion: design, implementation, and inversion. Acc. Chem. Res. 33, 572 (2000)

    Article  Google Scholar 

  6. Timoney, N., Elman, V., Glaser, S., Weiss, C., Johanning, M., Neuhauser, W., Wunderlich, C.: Error-resistant single-qubit gates with trapped ions. Phys. Rev. A 77, 052334 (2008)

    Article  ADS  Google Scholar 

  7. Singer, K., Poschinger, U., Murphy, M., Ivanov, P., Ziesel, F., Calarco, T., Schmidt-Kaler, F.: Colloquium: trapped ions as quantum bits: essential numerical tools. Rev. Mod. Phys. 82, 2609 (2010)

    Article  ADS  Google Scholar 

  8. Poulsen, U., Sklarz, S., Tannor, D., Calarco, T.: Correcting errors in a quantum gate with pushed ions via optimal control. Phys. Rev. A 82, 012339 (2010)

    Article  ADS  Google Scholar 

  9. Treutlein, P., Hänsch, T. W., Reichel, J., Negretti, A., Cirone, M.A., Calarco, T.: Microwave potentials and optimal control for robust quantum gates on an atom chip. Phys. Rev. A 74, 022312 (2006)

    Article  ADS  Google Scholar 

  10. De Chiara, G., Calarco, T., Anderlini, M., Montangero, S., Lee, P.J., Brown, B.L., Phillips, W.D., Porto, J.V.: Optimal control of atom transport for quantum gates in optical lattices. Phys. Rev. A 77, 052333 (2008)

    Article  ADS  Google Scholar 

  11. Chang, D.E., Thompson, J.D., Park, H., Vuletic, V., Zibrov, A.S., Zoller, P., Lukin, M.D.: Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett. 103, 123004 (2009)

    Article  ADS  Google Scholar 

  12. Doerk, H., Idziaszek, Z., Calarco, T.: Atom-ion quantum gate. Phys. Rev. A 81, 012708 (2010)

    Article  ADS  Google Scholar 

  13. Goerz, M., Calarco, T., Koch, C.: The quantum speed limit of optimal controlled phasegates for trapped neutral atoms. J. Phys. B, At. Mol. Opt. Phys. 44, 154011 (2011)

    Article  ADS  Google Scholar 

  14. Hacker, B., Welte, S., Rempe, G., Ritter, S.: A photon-photon quantum gate based on a single atom in an optical resonator. Nature 536, 193 (2016)

    Article  ADS  Google Scholar 

  15. Zhong, H.S., Pan, J.W., et al: Quantum computational advantage using photons. Science 70, 6523 (2020)

    Google Scholar 

  16. Waldherr, G., et al.: Quantum error correction in a solid-state hybrid spin register. Nature 506, 204 (2014)

    Article  ADS  Google Scholar 

  17. Zhou, B.B., Baksic, A., Ribeiro, H., Yale, C.G., Heremans, F.J., Jerger, P., Auer, A., Burkard, G., Clerk, A.A., Awschalom, D.D.: Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330 (2017)

    Article  Google Scholar 

  18. Wolfe, C.S., Bhallamudi, V.P., Wang, H.L., Du, C.H., Manuilov, S., Teeling-Smith, R.M., Berger, A.J., Adur, R., Yang, F.Y., Hammel, P.C.: Offresonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet. Phys. Rev. B 89, 180406 (2014)

    Article  ADS  Google Scholar 

  19. Hirose, M., Cappellaro, P.: Coherent feedback control of a single qubit in diamond. Nature 532, 77 (2016)

    Article  ADS  Google Scholar 

  20. Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L.J., Siyushev, P., Metsch, M.H., Park, H., Jelezko, F., Lončar, M., Lukin, M.D.: Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017)

    Article  ADS  Google Scholar 

  21. Lovchinsky, I., et al.: Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 6275 (2016)

    Article  MathSciNet  Google Scholar 

  22. DeMille, D.: Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002)

    Article  ADS  Google Scholar 

  23. Suzuki, S., Mishima, K., Yamashita, K.: Ab initial study of optimal control of ammonia molecular vibrational wavepackets: towards molecular quantum computin. Chem. Phys. Lett. 410, 358 (2005)

    Article  ADS  Google Scholar 

  24. Bomble, L., Lauvergnat, D., Remacle, F., Desouter-Lecomte, M.: Vibrational computing: Simulation of a full adder by optimal control. J. Chem. Phys. 128, 064110 (2008)

    Article  ADS  Google Scholar 

  25. Bomble, L., Lauvergnat, D., Remacle, F., Desouter-Lecomte, M.: Controlled full adder or subtractor by vibrational quantum computing. Phys. Rev. A 80, 022332 (2009)

    Article  ADS  Google Scholar 

  26. Bomble, L., Lauvergnat, D., Remacle, F., Desouter-Lecomte, M.: Controlled full adder-subtractor by vibrational computing. Phys. Chem. Chem. Phys. 12, 15628 (2010)

    Article  Google Scholar 

  27. Li, S., Shen, P., Chen, T., Xue, Z. -Y.: Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity. Fron. Phys. 16(5), 51502 (2021)

    Article  ADS  Google Scholar 

  28. Liu, W.W., Zhang, C.L., Zhang, L.: Fast and robust implementation of quantum gates by transitionless quantum driving. Quantum Inf. Pro. 20, 118 (2021)

    Article  MathSciNet  Google Scholar 

  29. Zhao, T.H., Wang, M.H., Zhou, B.: Optimal quantum state transformations based onmachine learning. Quant. Inf. Pro. 20, 212 (2021)

    Article  Google Scholar 

  30. Cimini, V., Gherardini, S., Barbieri, M., Gianani, I., Sbroscia, M., Buffoni, L., Paternostro, M., Caruso, F.: Experimental characterization of the energetics of quantum logic gates. npj Quant. Inf. 6, 96 (2020)

    Article  ADS  Google Scholar 

  31. Li, X, Wu, Y., Steel, D., Gammon, D., Stievater, T.H, Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J.: An all-optical quantum gate in a semiconductor quantum dot. Nature 301, 809 (2003)

    Google Scholar 

  32. Geng, J., Wu, Y., Wang, X., Xu, K., Shi, F., Xie, Y., Rong, X., Du, J.: Experimental time-Optimal universal control of spin qubits in solids. Phys. Rev. Lett. 117, 170501 (2016)

    Article  ADS  Google Scholar 

  33. Xu, Y., Cai, W., Ma, Y., Mu, X., Hu, L., Chen, T., Wang, H., Song, Y.P., Xue, Z.-Y., Yin, Z.-Q., Sun, L.: Single-loop Realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit. Phys. Rev. Lett. 121, 110501 (2018)

    Article  ADS  Google Scholar 

  34. Ebadi, S., Wang, T.T., Levine, H., Keesling, A., Semeghini, G., Omran, A., Lukin, M.D.: Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595(7866), 227–232 (2021)

    Article  ADS  Google Scholar 

  35. Tesch, C.M., de Vivie-Riedle, R.: Vibrational molecular quantum computing: Basis set independence and theoretical realization of the DeutschCJozsa algorithm. J. Chem. Phys. 121, 12158 (2004)

    Article  ADS  Google Scholar 

  36. Zhao, M., Babikov, D.: Phase control in the vibrational qubit. J. Chem. Phys. 125, 024105 (2006)

    Article  ADS  Google Scholar 

  37. Zhu, J., Kais, S., Wei, Q., Herschbach, D., Friedrich, B.: Implementation of quantum logic gates using polar molecules in pendular states. J. Chem. Phys. 138, 024104 (2013)

    Article  ADS  Google Scholar 

  38. Ho, T. -S., Rabitz, H.: Why do effective quantum controls appear easy to find?. J. Photochem. Photobiol. A 180, 226–240 (2006)

    Article  Google Scholar 

  39. Ho, T. -S., Dominy, J., Rabitz, H.: Landscape of unitary transformations in controlled quantum dynamics. Phys. Rev. A 79, 013422 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  40. Shu, C. -C., Ho, T. -S., Xing, X., Rabitz, H.: Frequency domain quantum optimal control under multiple constraints. Phys. Rev. A 93, 033417 (2016)

    Article  ADS  Google Scholar 

  41. Shu, C.-C., Ho, T.-S., Rabitz, H.: Monotonic convergent quantum optimal control method with exact equality constraints on the optimized control fields. Phys. Rev. A 93, 053418 (2016)

    Article  ADS  Google Scholar 

  42. Nanduri, A., Ho, T. -S., Rabitz, H.: Quantum-control-landscape structure viewed along straight paths through the space of control fields. Phys. Rev. A 93, 023427 (2016)

    Article  ADS  Google Scholar 

  43. Shu, C.-C., Dong, D.Y., etersen, I.R.P., Henriksen, N.E.: Complete elimination of nonlinear light-matter interactions with broadband ultrafast laser pulses. Phys. Rev. A 95, 033809 (2017)

    Article  ADS  Google Scholar 

  44. Guo, Y., Dong, D.Y., Shu, C.-C.: Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses. Phys. Chem. Chem. Phys. 20, 9498 (2018)

    Article  Google Scholar 

  45. D’Alessandro, D., Dahled, M.: Optimal control of two-level quantum systems. IEEE Trans. Automat. Control. 46, 866 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Dong, D.Y., Wu, C.Z., Chen, C.L., Qi, B., Petersen, I.R., Nori, F.: Learning robust pulses for generating universal quantum gates. Sci. Rep. 6, 36090 (2016)

    Article  ADS  Google Scholar 

  47. Li, J.F.: Remote preparation of an arbitrary two-qubit state and optimal control of quantum logical gates. Ph. D. Dissertation (Shanghai : East China Normal University) (2019)

  48. Koch, C.P., Boscain, U., Calarco, T., Dirr, G., Filipp, S., Glaser, S.J., Kosloff, R., Montangero, S., Schulte-Herbrüggen, T., Sugny, D., Wilhelm, F.K.: Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quant. Technol. 9, 19 (2022)

    Article  Google Scholar 

  49. Glaser, S.J., Boscain, U., Calarco, T., Koch, C.P., Köckenberger, W., Kosloff, R., Kuprov, I., Luy, B., Schirmer, S., Schulte-Herbrüggen, T., Sugny, D., Wilhelm, F.K.: Training schrödinger’s cat: quantum optimal control. Strategic report on current status, visions and goals for research in Europe. Eur. Phys. J. D. 69, 279 (2015)

    Article  ADS  Google Scholar 

  50. Dupont, N., Chatelain, G., Gabardos, L., Arnal, M., Billy, J., Peaudecerf, B., Sugny, D., Guéry-Odelin, D.: Quantum state control of a bose-einstein condensate in an optical lattice. PRX Quant. 2, 040303 (2021)

    Article  ADS  Google Scholar 

  51. Li, J.F., Hu, J.R., Wan, F., He, D.S.: Optimization two-qubit quantum gate by two optical control methods in molecular pendular states. Sci. Rep. 12, 14918 (2022)

    Article  ADS  Google Scholar 

  52. Cerfontaine, P., Botzem, T., Ritzmann, J., Humpohl, S.S., Ludwig, A., Schuh, D., Bougeard, D., Wieck, A.D., Bluhm, H.: Closed-loop control of a gaas-based singlet-triplet spin qubit with 99.5 gate fidelity and low leakage. Nat. Commun. 11, 4144 (2020)

    Article  ADS  Google Scholar 

  53. Homida, A.H., Sakrb, M.R., Mohamedc, A. -B. A., Abdel-Atyd, M., Obadae, A.-S.F.: Rashba control to minimize circuit cost of quantum fourier algorithm in ballistic nanowire. Phys. Lett. A 383, 1247 (2019)

    Article  ADS  Google Scholar 

  54. Probst, S., Ranjan, V., Ansel, Q., Heeres, R., Albanese, B., Albertinale, E., Vion, D., Esteve, D., Glaser, S.J., Sugny, D., Bertet, P.: Shaped pulses for transient compensation in quantum-limited electron spin resonance spectroscopy. J Magn. Reson. 303, 42–47 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shaanxi Province under Grant No. 2021JQ-813 and the fund of Xianyang Normal University under Grant No. XSYK20010.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and D.H. analyzed the theoretical framework. Z.X. and J.H. performed the numerical simulations under the supervision of J.L. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Jin-Fang Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JF., Xin, ZX., Hu, JR. et al. Quantum Optimal Control for Pauli Operators Based on Spin-1/2 System. Int J Theor Phys 61, 268 (2022). https://doi.org/10.1007/s10773-022-05246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05246-z

Keywords

Navigation