Skip to main content
Log in

Quantum Secret Sharing using GHZ State Qubit Positioning and Selective Qubits Strategy with Simulation Analysis

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper presents a novel (3, 3) quantum secret sharing scheme using GHZ product state. Using the classical information to be shared, a dealer toggles the qubits, and then shares the product state. The other three parties make their Bell measurements and collude to reconstruct the secret. Unlike the other existing protocols, the proposed protocol does not involve the entire initial state in the secret reconstruction and discard the redundant qubits at the time of reconstruction to decode the secret. The protocol also allows for security against malicious attacks by an adversary without affecting the integrity of the secret. The security of the protocol lies in the fact that each party’s correct announcement of their measurement is required for reconstruction, failing which the reconstruction process is jeopardized, thereby ascertaining the (3, 3) scheme which has the potential to be generalized to a (tt) protocol in a similar way. The simulation of the protocol has been performed on IBM-QE platform with backend providers IBMQ_16_Melbourne, IBMQ_Casablanca and IBMQ_Qasm_simulator_V0.1.547.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    Article  ADS  Google Scholar 

  4. Xiao, L., Long, G.L., Deng, F.-G., Pan, J.-W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. 69(5), 052307 (2004)

    Article  Google Scholar 

  5. Zhang, Z.-J., Li, Y., Man, Z.-X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Guo, G.-P., Guo, G.-C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)

    Article  ADS  Google Scholar 

  8. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420–424 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Zu-Rong, Z., Wei-Tao, L., Cheng-Zu, L.: Quantum secret sharing based on quantum error-correcting codes. Chinese Phys. B 20(5), 050309 (2011)

    Article  ADS  Google Scholar 

  10. Gu, B., Mu, L., Ding, L., Zhang, C., Li, C.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283(15), 3099–3103 (2010)

    Article  ADS  Google Scholar 

  11. Yang, Y.-G., Teng, Y.-W., Chai, H.-P., Wen, Q.-Y.: Fault-tolerant quantum secret sharing against collective noise. Phys. Script. 83(2), 025003 (2011)

    Article  ADS  MATH  Google Scholar 

  12. Musanna, F., Kumar, S.: A novel three-party quantum secret sharing scheme based on bell state sequential measurements with application in quantum image sharing. Quant. Inform. Process. 19(10), 1–21 (2020)

    MathSciNet  Google Scholar 

  13. Mashhadi, S., Dehkordi, M.H., Kiamari, N.: Provably secure verifiable multi-stage secret sharing scheme based on monotone span program. IET Inform. Secur. 11(6), 326–331 (2017)

    Article  Google Scholar 

  14. Qin, H., Dai, Y.: Verifiable (t, n) threshold quantum secret sharing using d-dimensional bell state. Inform. Process. Lett. 116(5), 351–355 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qin, H., Tso, R., Dai, Y.: Multi-dimensional quantum state sharing based on quantum fourier transform. Quant. Inform. Process. 17(3), 48 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Xiao, H., Gao, J.: Multi-party d-level quantum secret sharing scheme. Int. J. Theoret. Phys. 52(6), 2075–2082 (2013)

    Article  MathSciNet  Google Scholar 

  17. Yang, W.: Liusheng Huang, Runhua Shi, and Libao He. Secret sharing based on quantum fourier transform. Quant. Inform. Process. 12(7), 2465–2474 (2013)

  18. Mashhadi, S.: General secret sharing based on quantum fourier transform. Quant. Inform. Process. 18(4), 114 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Williams, B.P., Lukens, J.M., Peters, N.A., Qi, B., Grice, W.P.: Quantum secret sharing with polarization-entangled photon pairs. Phys. Rev. A 99(6), 062311 (2019)

    Article  ADS  Google Scholar 

  20. Zhou, Y., Yu, J., Yan, Z., Jia, X., Zhang, J., Xie, C., Peng, K.: Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys. Rev. Lett. 121(15), 150502 (2018)

    Article  ADS  Google Scholar 

  21. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s theorem, quantum theory, and conceptions of the universe, (1989)

  22. IBM quantum computing platform. https://www.ibm.com/quantum-computing/

Download references

Acknowledgements

One of the authors, Farhan Musanna, is grateful to the Ministry of Human Resource Development, India and the Indian Institute of Technology, Roorkee for being the funding agency of this work. The grant number is MHR-01-23-200-428. The work is also partially funded by the project grant no. CRG/2020/002040 of SERB New Delhi, India. The authors are extremely thankful to IBM for providing access to their Quantum Experience (IBM-QE) cloud servers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhan Musanna.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musanna, F., Kumar, S. Quantum Secret Sharing using GHZ State Qubit Positioning and Selective Qubits Strategy with Simulation Analysis. Int J Theor Phys 61, 255 (2022). https://doi.org/10.1007/s10773-022-05237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05237-0

Keywords

Navigation