Skip to main content
Log in

A Modular Operator Approach to Entanglement of Causally Closed Regions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum entanglement is shown for causally separated regions along the radial direction by using a conformal quantum mechanical correspondence with conformal radial Killing fields of causal diamonds in Minkowski space. In particular, the theory of local von Neumann algebras and Tomita Takesaki modular operators is applied in the entanglement structure of causal diamonds in conformal quantum mechanics. The entanglement of local states in their respective causal regions is shown through the measures of concurrence and entanglement entropy using the Tomita Takesaki modular conjugation operator. A holographic entropy formula is derived for the conformal quantum mechanics causal diamond correspondence. A new connection is made between the thermal time flow defined by the modular group of automorphisms to the physical time flow in a causal diamond via the aforementioned correspondence. The thermal interpretation of these results via two-point thermal Green’s functions and modular group flow supports the idea of a possible emergent theory of spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. De Alfaro, V., Furini, S., Furlan, G.: Conformal invariance in quantum mechanics. Nuovo Cimento A 34(4), 569–612 (1976)

    Article  ADS  Google Scholar 

  2. Boozer, A.: Quantum field theory in (0+1) dimensions. Eur. J. Phys. 28, 729–745 (2007)

    Article  MathSciNet  Google Scholar 

  3. Unruh, W.G., Wald, R.: Time and the interpretation of canonical quantum gravity. Phys. Rev. D 40(8), 2598–2614 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  4. Arzano, M.: Conformal quantum mechanics of causal diamonds, J. High Energy Phys.(5), 1029-8479 (2020)

  5. R. Chatterjee and T. Yu, Modular Operators and Entanglement in Supersymmetric Quantum Mechanics, Journal of Physics A: Mathematical and Theoretical, 54 (20) (2021)

  6. Maldacena, J.: The Large N Limit of Superconformal field theories and supergravity. Int. J. Theor. Phys. 38(4), 0020–7748 (1999)

    Article  MathSciNet  Google Scholar 

  7. Maldacena, J.: Eternal black holes in anti-de Sitter. J. High Energy Phys. 04, 1029–8479 (2003)

    MathSciNet  Google Scholar 

  8. S. Carlip, Logarithmic corrections to black hole entropy, from the Cardy formula, Classical and Quantum Gravity, 17(20) (2000)

  9. Chamon, C., Jackiw, R., Pi, S.-Y., Santos, L.: Conformal quantum mechanics as the CFT1 dual to AdS2. Phys. Lett. B 701(4), 503–507 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. Henkel, M.: Conformal invariance and critical phenomena. Springer-Verlag (1999)

  11. Herrero, A., Antonio Morales, J.: Radial conformal motions in minkowski spacetime. J. Math. Phys. 40(7), 3499 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Unruh, W.G.: Notes on black hole evaporation, Phys. Rev. D 14(4) (1976)

  13. Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  14. Anninos, D., Hartnoll, S., Hofman, D.: Static Patch Solipsism: Conformal Symmetry of the de Sitter Worldline. Class. Quantum Gravity 29(7), 1361–6382 (2012)

    Article  MathSciNet  Google Scholar 

  15. Nakayama, R.: The World-Line Quantum Mechanics Model at Finite Temperature which is Dual to the Static Patch Observer in de Sitter Space. Progress Theoret. Phys. 173(3), 1347–4081 (2012)

    Google Scholar 

  16. Haag, R.: Local Quantum Physics. Springer-Verlag, New York (1996)

    Book  Google Scholar 

  17. Witten, E.: Invited article on entanglement properties of quantum field theory. Rev. Mod. Phys. 90, 90.045003 (2018)

    Article  Google Scholar 

  18. Lashkari, N., Liu, H., Rajagopal, S.: Modular flow of excited states, J. High Energy Phys., (9) (2019)

  19. Arzano, M.: Vacuum thermal effects in flat space-time from conformal quantum mechanics. J. High Energy Phys. 003, 1029–8479 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Jacobson, T.: Entanglement equilibrium and Einstein’s Equations. Phys. Rev. Lett. 116(20), 1079–7114 (2016)

    Article  MathSciNet  Google Scholar 

  21. Connes, A., Rovelli, C.: Von Nueumann algebra automorphisms and time-thermodynamics relation in general covariant quantum theories. Class. Quantum Gravity 11(12), 1361–6382 (1994)

    Article  Google Scholar 

  22. Hollands, S., Wald, R.: Quantum fields in curved spacetime, Physical Reports, (574, 1-35), (2015)

  23. Wooters, W.: Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 80(10), 1079–7114 (1997)

    Google Scholar 

  24. Caldirola, P.: A New Model of Classical electron. Nuovo Cimento 1955–1965(3), 297–343 (1956)

    Article  MathSciNet  Google Scholar 

  25. Farias, R.H.A., Recami, E.: Introduction of a quantum of time (“chronon”) and its consequences for quantum mechanics. Adv. Imaging Electron. Phys. 163, 33–115 (2010)

    Article  Google Scholar 

  26. Caldirola, P.: The Introduction of the chronon in the electron theory and a charged-lepton mass formula. Lettere Al Nuovo Cimento 27(8) (1980)

  27. Albanese, C., Lawi, S.: Time quantization and q-deformations. J. Phys. A: Math. Gen. 37, 2983–2987 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. Olkhovsky, V.S., Recami, E.: Time as a quantum observable. Int. J. Modern Phys. A, 22(8) (2007)

  29. Yang, C.N.: On Quantized Space-Time. Phys. Rev. 72, 874 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gupta, K. S., Harikumar, E., Zuhair, N.S.: Conformal quantum mechanics and holography in noncommutative space-time, Phys. Lett. B, 772:10.1016 (2017)

  31. Martinetti, P., Rovelli, C.: Diamonds’s temperature: unruh effect for bounded trajectories and thermal time hypothesis. Classical and Quantum Gravity, 20(22) (2003)

  32. Martinetti, P.: Conformal mapping of unruh temperature. Modern Phys. Lett. A, 24(19) (2009)

  33. Jackiw, R., Pi, S.-Y.: Conformal blocks for the 4-point function in conformal quantum mechanics, Phys. Rev. D, 1550-2368 (2012)

  34. Jacobson, T., Visser, M.: Gravitational thermodynamics of causal diamonds in (A)dS. SciPost Physics 7(6), 2542–4653 (2019)

    Article  MathSciNet  Google Scholar 

  35. Visser, M.: Emergent gravity in a holographic Universe, PhD Thesis, University of Amsterdam, (2019)

  36. Israel, W.: Thermo-field dynamics of black holes, Phys. Lett. A, 57(2) (1976)

  37. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. I. Academic Press, New York (1983)

    MATH  Google Scholar 

  38. Takesaki, M.: Theory of Operator Algebras I. Springer-Verlag, New York (1979)

    Book  Google Scholar 

  39. Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics I. Springer Verlag, Berlin (1987)

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank Michele Arzano for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupak Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Von Neumann Algebras and Tomita-Takesaki Modular Operators

Appendix: Von Neumann Algebras and Tomita-Takesaki Modular Operators

The general references for this section are [37,38,39].

Normed Algebra: Consider an algebra \(A \in \mathcal {A}\) over \(\mathbb {C}\). A normed algebra has a Norm Map: \(A \rightarrow ||A|| \in \mathbb {R}^+\) such that

$$\begin{aligned}&||A|| > 0\\&||A|| = 0 \; \text {iff} \; A=0\\&\alpha \in \mathbb {C}, ||\alpha A||= |\alpha | ||A||\\&||A+B|| \le ||A|| + ||B||\\&||AB|| \le ||A|| \; ||B|| \end{aligned}$$

Banach Algebra: Let \(\mathcal {A}\) be an algebra. A normed algebra has a norm map: \(\mathcal {A} \rightarrow \mathbb {R}^+ , \,\,\, A \rightarrow ||A|| \in \mathbb {R}^+ , \forall A \in \mathcal {A}\) such that

$$\begin{aligned}&||A|| \ge 0,\\&||A|| = 0 \iff A=0, \\&\alpha \in \mathbb {C} , ||\alpha A || = |\alpha | \, ||A||, \\&|| A+B|| \le ||A|| + ||B||, \\&||AB|| \le ||A|| \, ||B|| . \end{aligned}$$

A Banach algebra is a complete normed algebra (complete in the norm map): Consider a Cauchy sequence \(A_1, A_2, ... \in \mathcal {A}\). For any \(\epsilon >0, \exists\) an integer N such that \(\forall\) natural numbers \(m,n > N\), \(||A_m -A_n|| < \epsilon\) (a sequence whose elements become arbitrarily close to each other as the sequence progresses). By introducing a “distance” metric \(d(A,B)=||A-B||\), once induces a topology on \(\mathcal {A}\) where a neighborhood U in \(\mathcal {A}\) is given by \(U(A,\epsilon )=\{B; \; B \in \mathcal {A}, \; d(A,B) < \epsilon , \; \epsilon >0\}\). A metric space \((\mathcal {A}, d)\) in which every Cauchy sequence converges to an element in \(\mathcal {A}\) is called complete in the standard norm. Counterexample: Rational numbers \((p/q) \in \mathbb {Q}\) are not complete. The Cauchy sequence \(x+0=1, x_{n+1}=\frac{x_n +2/x_n}{2}\) converges to the irrational number \(\sqrt{2}\).

Furthermore, for example, let \(\mathcal {A} = C^0(X, \mathbb {C}) \equiv\) complex valued continuous functions f on a compact space X (a bounded region): \(f: X \rightarrow \mathbb {C}\).

$$\begin{aligned}&\text {Let} x \in X, \;\;\ f,g \in \mathcal {A}\\&(f+g)(x) =f(x) +g(x) \ \text {(Addition)}\\&(\alpha f)(x) = \alpha f(x) \ \text {(scalar multiplication)}\\&\Big ( fg \Big ) (x) =f(x)g(x) \ \text {(Algebra product)}\\&||f|| = \underset{x\in X}{\sup } |f(x)| \ \text {(norm)} \end{aligned}$$

\(\varvec{C}^{*}\) -Algebra: A \(\varvec{C}^{*}\)-algebra \(\mathcal {A}\) is a Banach algebra with an involutive map \(^*: \mathcal {A} \rightarrow \mathcal {A} , \,\,\, A \rightarrow A^* \,\,\, \forall A \in \mathcal {A} , \lambda \in \mathbb {C}\) such that

$$\begin{aligned}&(A^{*})^{*}=A\\&(AB)^{*}=B^{*} A^{*}\\&(\lambda A)^{*}= \bar{\lambda } A^{*}\\&(\lambda A + \alpha B )^{*} = \bar{\lambda } A^{*} +\bar{\alpha } B^{*} \text {(anti-linear) } \text { (so far, we have a *-algebra)}\\&||A^{*}|| = ||A|| \text { (norm condition for involutive Banach algebra),}\\&||A A^{*}|| = ||A|| \, ||A^{*}|| = ||A^{*} A|| = ||A^{*}|| \, ||A|| =||A||^{2} (C^{*} \text { condition for } \varvec{C}^{*} \text { -Algebra).}\\ \end{aligned}$$

If \(A^{*} = A\), this element is called self-adjoint. If \(A^{*}A = AA^{*} =I\) this element is called unitary.

For example, let \(\mathcal {A} = C^0(X, \mathbb {C}) \equiv\) complex valued continuous functions f on a compact space X (a bounded region). From above, we know that this is a Banach algebra. We know introduce an involution map through complex conjugation:

$$\begin{aligned}&f^{*}: X \rightarrow \mathbb {C}, \;\;\; f^{*} \in \mathcal {A}\\&f^{*}(x) := \overline{f(x)}, \; \forall x \in X \text { (Involution)}\\&||f^{*}|| = \underset{x\in X}{\sup } |f^{*}(x)|=\underset{x\in X}{\sup } |\overline{f(x)}| =\underset{x\in X}{\sup } |f(x)|= ||f|| \text { (norm condition)}\\ \end{aligned}$$

Furthermore, consider complex \(n \times n\) matrices A. Here, we have

$$\begin{aligned}&A^{*} := A^{\dagger } \ \text {(involution is the adjoint operation)}\\&||A|| := \sqrt{Tr(AA^{\dagger })} \ \text {(norm is the square root of trace)} \end{aligned}$$

The algebra is given by commutative matrix addition \(A+B\) and non-commutative matrix multiplication \(AB \ne BA\).

Bounded Linear Operators \(\mathcal {B}(\mathcal {H})\) on a Hilbert Space: Let \(\mathcal {H}\) be a Hilbert space. A bounded linear operator \(A \in \mathcal {B} (\mathcal {H})\) acts on the Hilbert space \(A: \mathcal {H} \rightarrow \mathcal {H}\) such that

$$\begin{aligned}&A(\psi + \phi )=A(\psi )+A(\phi ), \;\; \forall \psi ,\phi \in \mathcal {H} \text { (linearity)}\\&\exists \ \text { a positive real number } c < \infty \text { such that } ||A(\psi )|| \le c ||\psi ||, \;\; \forall \psi \in \mathcal {H} \ \text {(bounded)}\\&||A|| = \underset{\psi \in \mathcal {H}, ||\psi || =1}{\sup } \{||A(\psi )|| \} \text { (norm of an operator)} \end{aligned}$$

For all \(A \in \mathcal {B}(\mathcal {H}), \;\exists\) a unique element called the adjoint operator \(A^{\dagger } \in \mathcal {B}(\mathcal {H})\) such that (using the Hilbert space inner product \(\langle \cdot , \cdot \rangle\)

$$\begin{aligned}&\langle A^{\dagger }(\psi ), \phi \rangle = \langle \psi , A(\phi ) \rangle \\&(\alpha A + \lambda B)^{\dagger } = \overline{\alpha } A^{\dagger } + \overline{\lambda } B^{\dagger }\\&(A B)^{\dagger } = B^{\dagger } A^{\dagger } \\&(A^{\dagger })^{\dagger } = A\\&||A^{\dagger }A|| = ||A A^{\dagger }|| =||A||^2\\&||A^{\dagger }|| = ||A|| \end{aligned}$$

The \(\varvec{C}^{*}\)-Algebra features can be given to \(\mathcal {B}(\mathcal {H})\) via the following

Banach Norm \(\longrightarrow\) Operator Norm

Involution \(*\)-operator \(\longrightarrow\) Adjoint operation \(^\dagger\)

\(||A^{*}||=||A^{\dagger }|| = ||A||\) (Norm condition)

\(||A A^*|| = ||A A^{\dagger }|| =||A|| \; ||A^{\dagger }|| = ||A||^2\) (\(C^*\) condition for \(\varvec{C}^{\varvec{*}}\)-Algebra).

\({}^{\varvec{*}}\) -Homomorphism \(\varvec{\xi }\): Let \(\mathcal {A}\) and \(\mathcal {B}\) be \(\varvec{C}^{*}\)-algebras. A \({}^{\varvec{*}}\)-homomorphism \(\xi\) is a mapping \(\xi :\mathcal {A} \rightarrow \mathcal {B}\) that preserves the algebraic and \({}^{\varvec{*}}\) structures of \(\mathcal {A}\). That is, \(\forall A,A_1,A_2 \in \mathcal {A}\)

$$\begin{aligned}&\xi ( A_1 + \ A_2)= \xi (A_1) + \xi (A_2) \;\text {(linearity)}\\&\xi (A_1 A_2)=\xi (A_1)\xi (A_2) \ \text {(homomorphism)}\\&\xi (A^*)=\xi (A)^{*}\ (^{*}\text{-preserving)} \end{aligned}$$

In general, \(\varvec{\xi }\) is norm decreasing, i.e. \(||\xi (A)|| \le ||A||\). If \(\varvec{\xi }\) is an \({}^{\varvec{*}}\)-isomorphism (one-to-one, onto), then it is norm preserving, \(||\xi (A)|| = ||A||\). A \({}^{\varvec{*}}\)-automorphism is a \({}^{\varvec{*}}\)-isomorphism from a \({C}^{\varvec{*}}\)-algebra to itself, i.e. \(\xi :\mathcal {A} \rightarrow \mathcal {A}\).

Representation \(\varvec{\pi }\) of a \(\varvec{C}^{\varvec{*}}\) -Algebra: A representation of a \(\varvec{C}^{\varvec{*}}\)-algebra \(\mathcal {A}\) is a pair \((\mathcal {H}, \pi )\) where \(\mathcal {H}\) is a Hilbert space and \(\pi\) is a \({}^{\varvec{*}}\)-Homomorphism from \(\mathcal {A}\) to \(\mathcal {B}(\mathcal {H})\), \(\pi :\mathcal {A} \rightarrow \mathcal {B}(\mathcal {H})\). If \(\pi\) is an \({}^{\varvec{*}}\)-isomorphism, it is called faithful such that

$$\begin{aligned}&x \text {ker} \; \pi = \{0\} \ \text {(faithful)}\\&||\pi (A)|| = ||A||, \forall A \in \mathcal {B}(\mathcal {H}) \ \text {(norm preserving)}\\&||\pi (A)||> 0, \forall A > 0 \ \text {(positive)} \end{aligned}$$

A subset \(S \subset \mathcal {H}\) is called invariant under \(\mathcal {A}\) if \(\pi (\mathcal {A})S := \{\mathcal {A}\psi | A\in \mathcal {A}, \psi \in \mathcal {H}\} \subset S\)

A representation \(\pi\) is called irreducible if the only subspace of \(\mathcal {H}\) invariant under \(\pi (\mathcal {A})\) are \(\{0\}\) and \(\mathcal {H}\).

An operator \({A \in \mathcal {B}(\mathcal {H})}\) is called dense if its range exists only in the dense subspace of the Hilbert space \(\mathcal {D} \in \mathcal {H}\).

Cyclic Vector \(\; \Omega \in \mathcal {H}\) : A vector \(\; \Omega \in \mathcal {H}\) is called a cyclic vector for a set of bounded operators \(\mathcal {B}(\mathcal {H})\) if \(\{A \; \Omega | A \in \mathcal {B}(\mathcal {H})\}\) is dense in the whole \(\mathcal {H}\).

Cyclic Representation \(\varvec{\pi }\) of a \(\varvec{C}^{\varvec{*}}\) -Algebra: A cyclic representation of a \(\varvec{C}^{\varvec{*}}\)-algebra \(\mathcal {A}\) is a triple \((\mathcal {H}, \pi , \Omega )\) where \((\mathcal {H}, \pi )\) is a representation of \(\mathcal {A}\) and \(\Omega \in \mathcal {H}\) is cyclic in the representation \(\pi\).

Linear Functionals (and States): Given an algebra \(\mathcal {A}\), a linear functional (or state) on \(\mathcal {A}\) (a scalar valued ’function’ on \(\mathcal {A}\)) is a map \(\omega :\mathcal {A} \rightarrow \mathbb {C}\) such that \(\omega (\lambda A +\beta B)=\lambda \omega (A) +\beta \omega (B)\). Furthermore,

If \(\mathcal {A}\) is a \(^*\)-algebra, \(\omega\) is called a positive functional if \(\omega (A^* A) \ge 0, \forall A \in \mathcal {A}\)

A state \(\omega\) is a positive functional with \(\omega (A^*)=\overline{\omega (A)}\).

If \(\mathcal {A}\) is a \(^*\)-algebra, and \(\omega _i\) are positive functionals then for \(\lambda _i \in \mathbb {R}^+, \sum _i \lambda _i = 1\), one may construct a positive convex linear functional as \(\omega = \sum _i \lambda _i \omega _i\).

If \(\mathcal {A}^{sa}\) is self-adjoint subspace, i.e. \(A^* = A\) and \(\omega\) is a positive functional, then \(\omega :\mathcal {A}^{sa} \rightarrow \mathbb {R}\) (real scalars)

If \(\mathcal {A}\) is a \(\varvec{C}^{\varvec{*}}\)-algebra, every positive functional \(\omega\) is continuous.

Let \(\mathcal {A}\) be a \(\varvec{C}^{\varvec{*}}\)-algebra. \(\forall A \in \mathcal {A}, \exists\) a positive functional \(\omega _A\) such that, \(||\omega _A||=1\) and \(\omega _A(A^* A) = ||A||^2\).

GNS Construction-Representation from a State: Let \(\mathcal {A}\) be a \(\varvec{C}^{\varvec{*}}\)-algebra (of observables). Let \(\omega\) be a functional (state) on \(\mathcal {A}\). A representation of \(\mathcal {A}\) constructed from \(\omega\) is a pair \((\mathcal {H}, \pi _{\omega })\) where given the inner product on \(\mathcal {H}\), \(\left\langle \;\; | \;\; \right\rangle : \mathcal {H} \times \mathcal {H} \rightarrow \mathbb {C}\) and a cyclic vector \(\Omega _\omega\) with respect to \(\pi _{\omega }\) \(\bigl ( \pi _{\omega }(\mathcal {A}) |\left. \Omega _\omega \right\rangle\) is dense in \(\mathcal {H}\bigr )\), one has the action of operators on \(\mathcal {H}\) such that

$$\begin{aligned} \omega (A) := \frac{\left\langle \Omega _\omega |\pi _{\omega }(A) \Omega _\omega \right\rangle }{\left\langle \Omega _\omega | \Omega _\omega \right\rangle } \end{aligned}$$

Remark

This method requires one to choose a preferred representation \(\pi _{\omega }\). In quantum mechanics, the Stone von Neumann theorem states that all representations of the Weyl algebra are unitarily equivalent to the Schrödinger representation so this is not a problem. In Minkowski QFT, Poincaré invariance chooses an appropriate cyclic vector (vaccuum state). The choice of a representation becomes an issue in QFT on curved spacetime manifolds.

Von Neumann Algebra: Consider a \(C^*\)-algebra \(\mathcal {B(H)} =\{A\}\) of bounded linear operators on a Hilbert space, \(A: \mathcal {H} \rightarrow \mathcal {H}\). Let \(\mathcal {C}\) be a subset of \(\mathcal {B(H)}\). An operator \(A \in \mathcal {B(H)}\) belongs to the commutant \(\mathcal {C}'\) of the set \(\mathcal {C}\) \(\iff\) \(AC =CA, \,\,\, \forall C \in \mathcal {C}\). A von Neumann algebra \(\mathcal {A}\) is a unital \(C^*\)-subalgebra of \(\mathcal {B(H)}\) such that \(\mathcal {A}'' = \mathcal {A}\). Consider a von Neumann algebra \(\mathcal {A} \subset \mathcal {B(H)}\). A von Neumann algebra in standard form is one where there exists an element \(| \Omega \rangle \in \mathcal {H}\) which is both cyclic (operating on \(| \Omega \rangle\) with elements in \(\mathcal {A}\) can generate a space dense in \(\mathcal {H}\)) and separating (if \(A | \Omega \rangle = 0\), then \(A=0\)).

Tomita Takesaki Modular Operators: Consider a von Neumann algebra \(\mathcal {A} \subset \mathcal {B(H)}\) in standard form with a cyclic and separating vector \(| \Omega \rangle \in \mathcal {H}\). Let \(S:\mathcal {H} \rightarrow \mathcal {H}\) be a anti-unitary operator defined by \(S A | \Omega \rangle = A^* | \Omega \rangle\). Let the closure of S have a polar decomposition given by \(S=J \Delta ^{\frac{1}{2}} =\Delta ^{-\frac{1}{2}} J\), where J is called the modular conjugation operator and \(\Delta\) is called the modular operator. J is anti-linear and anti-unitary whereas \(\Delta\) is self-adjoint and positive. Furthermore, the following relations hold:

  1. 1.

    \(J \Delta ^{\frac{1}{2}} J = \Delta ^{-\frac{1}{2}}\)

  2. 2.

    \(J^2 =I, \,\,\, J^{*} = J\)

  3. 3.

    \(J |\Omega \rangle = |\Omega \rangle\)

  4. 4.

    \(J \mathcal {A} J = \mathcal {A}^{\prime }\)

  5. 5.

    \(\Delta = S^{*} S\)

  6. 6.

    \(\Delta |\Omega \rangle = |\Omega \rangle\)

  7. 7.

    \(\Delta ^{it} \mathcal {A} \Delta ^{-it} = \mathcal {A}\) (one parameter-t group of automorphisms of \(\mathcal {A})\)

  8. 8.

    If \(\omega (A) = \langle \Omega | A \Omega \rangle\), \(\forall A \in \mathcal {A}\), then \(\omega\) is a KMS (Kubo-Martin-Schwinger) functional (state) on \(\mathcal {A}\) with respect to the automorphism of 7.

  9. 9.

    \(|\Omega \rangle\) is cyclic for \(\mathcal {A}\) if and only if \(|\Omega \rangle\) is separating for \(\mathcal {A}'\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallaro, C., Chatterjee, R. A Modular Operator Approach to Entanglement of Causally Closed Regions. Int J Theor Phys 61, 221 (2022). https://doi.org/10.1007/s10773-022-05211-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05211-w

Keywords

Navigation