Skip to main content
Log in

Probing Sterile Neutrinos Using Decay Width Measurements at Colliders

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We show that the measured decay widths of Higgs, Z and W bosons can be used to probe sterile neutrinos, if they are kinematically allowed to be produced from these heavy Standard Model (SM) particle decays via the active-sterile neutrino mixing. We analyse the sensitivity of these measured SM quantities to constrain the active-sterile neutrino mixing as a function of the sterile neutrino mass. We make a comparative study of these constraints with other existing constraints from electroweak precision data, beam dump experiments as well as from peak searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Djouadi, I.: The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model. Phys. Rept. 457, 1 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aad, G., et al.: [ATLAS Collaboration], Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012)

    Article  ADS  Google Scholar 

  3. Chatrchyan, S., et al.: [CMS Collaboration], Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012)

    Article  ADS  Google Scholar 

  4. Bilenky, S.M., Petcov S.T.: Massive neutrinos and neutrino oscillations. Rev. Mod. Phys. 59, 671 (1987). [erratum: Rev. Mod. Phys. 61, 169 (1989) ; erratum: Rev. Mod. Phys. 60, 575-575 (1988)]

  5. King, S.F.: Neutrino mass models. Rept. Prog. Phys. 67, 107 (2004)

    Article  ADS  Google Scholar 

  6. Mohapatra, R.N., Senjanovic, G.: Neutrino mass and spontaneous parity nonconservation. Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  MATH  Google Scholar 

  7. Yanagida, T.: Horizontal gauge symmetry and masses of neutrinos. Conf. Proc. C 7902131, 95-99 (1979) KEK-79-18-95

  8. Schechter, J., Valle, J.W.F.: Neutrino masses in SU(2) x U(1) theories. Phys. Rev. D 22, 2227 (1980)

    Article  ADS  Google Scholar 

  9. Mohapatra, R.N., Senjanovic, G.: Neutrino masses and mixings in gauge models with spontaneous parity violation. Phys. Rev. D 23, 165 (1981)

    Article  ADS  Google Scholar 

  10. Foot, R., Lew, H., He, X.G., Joshi, G.C.: Seesaw neutrino masses induced by a triplet of leptons. Z. Phys. C 44, 441 (1989)

    Article  Google Scholar 

  11. Das, A., Dev, P.S.B., Kim, C.S.: Constraining sterile neutrinos from precision higgs data. Phys. Rev. D 95(11), 115013 (2017)

    Article  ADS  Google Scholar 

  12. de Gouvea, A., Vogel, P.: Lepton flavor and number conservation, and physics beyond the standard model. Prog. Part. Nucl. Phys. 71, 75–92 (2013)

    Article  ADS  Google Scholar 

  13. Mohapatra, R.N., Pati, J.C.: Left-right gauge symmetry and an isoconjugate model of CP violation. Phys. Rev. D 11, 566 (1975)

    Article  ADS  Google Scholar 

  14. Bhupal Dev, P.S., Mohapatra, R.N., Rodejohann, W., Xu, X.J.: Vacuum structure of the left-right symmetric model. JHEP 02, 154 (2019)

  15. Helo, J.C., Li, H., Neill, N.A., Ramsey-Musolf, M., Vasquez, J.C.: Probing neutrino Dirac mass in left-right symmetric models at the LHC and next generation colliders. Phys. Rev. D 99(5), 055042 (2019)

    Article  ADS  Google Scholar 

  16. Asaka, T., Shaposhnikov, M.: The \(\nu\)MSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 620, 17–26 (2005)

    Article  ADS  Google Scholar 

  17. Behnke, T., Brau, J.E., Burrows, P.N, Fuster, J., Peskin, M., Stanitzki, M., Sugimoto, Y., Yamada, S., Yamamoto, H., Abramowicz, H. et al. The international linear collider technical design report - volume 4: detectors. (2013) [arXiv:1306.6329 [physics.ins-det]]

  18. Grojean, C..: FCC-ee: physics motivations. Eur. Phys. J. Plus 137(1), 116 (2022)

    Article  Google Scholar 

  19. Blondel, A.: FCC-ee overview: new opportunities create new challenges. Eur. Phys. J. Plus 137(1), 92 (2022)

    Article  Google Scholar 

  20. Gao, J.: Review of different colliders. Int. J. Mod. Phys. A 36(22), 2142002 (2021)

    Article  ADS  Google Scholar 

  21. Deppisch, F.F., Bhupal Dev, P.S., Pilaftsis, A.: Neutrinos and collider physics. New J. Phys. 17(7), 075019 (2015)

    Article  ADS  Google Scholar 

  22. Babu, K.S., Mohapatra, R.N.: Predictive neutrino spectrum in minimal SO(10) grand unification. Phys. Rev. Lett. 70, 2845–2848 (1993)

    Article  ADS  Google Scholar 

  23. Aguilar-Arevalo A., et al.: [LSND], Evidence for neutrino oscillations from the observation of \(\bar{\nu }_e\) appearance in a \(\bar{\nu }_\mu\) beam, Phys. Rev. D 64 , 112007 (2001) [arXiv:hep-ex/0104049 [hep-ex]]

  24. Aguilar-Arevalo, A.A., et al.: [MiniBooNE], Updated MiniBooNE neutrino oscillation results with increased data and new background studies. Phys. Rev. D 103, (5) 052002 (2021)

  25. Bolton, P.D., Deppisch, F.F., Bhupal Dev, P.S.: Neutrinoless double beta decay versus other probes of heavy sterile neutrinos. HEP 03, 170 (2020)

    ADS  Google Scholar 

  26. Roitgrund, A., Eilam, G., Bar-Shalom, S.: Implementation of the left-right symmetric model in FeynRules. Comput. Phys. Commun. 203, 18–44 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Chang, D., Mohapatra, R.N., Parida, M.K.: Decoupling Parity and SU(2)-R Breaking Scales: A New Approach to Left-Right Symmetric Models. Phys. Rev. Lett. 52, 1072 (1984)

    Article  ADS  Google Scholar 

  28. Khachatryan, V., et al.: [CMS], Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs. Phys. Lett. B 736, 64–85 (2014)

    Article  ADS  Google Scholar 

  29. Sirunyan, A.M., et al.: [CMS Collaboration], Measurements of the Higgs boson width and anomalous \(HVV\) couplings from on-shell and off-shell production in the four-lepton final state. Phys. Rev. D 99(11), 112003 (2019)

    Article  ADS  Google Scholar 

  30. Renton, P.: Updated SM calculations of \(\sigma _W\) / \(\sigma _Z\) at the Tevatron and the \(W\) boson width. (2008) arXiv:0804.4779 [hep-ph]

  31. [Tevatron Electroweak Working Group], Combination of CDF and D0 Results on the Width of the W boson. (2010) arXiv:1003.2826 [hep-ex]

  32. Schael, S., et al.: [ALEPH and DELPHI and L3 and OPAL and SLD Collaborations and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavour Group], Precision electroweak measurements on the \(Z\) resonance. Phys. Rept. 427, 257 (2006)

    Google Scholar 

  33. Alwall, J., et al.: The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 1407, 079 (2014)

    Article  ADS  Google Scholar 

  34. Alloul, A., Christensen, N.D., Degrande, C., Duhr, C., Fuks, B.: FeynRules 2.0 - A complete toolbox for tree-level phenomenology. Comput. Phys. Commun. 185, 2250–2300 (2014)

    Article  ADS  Google Scholar 

  35. Zyla, P.A.: et al. [Particle Data Group], Review of Particle Physics, PTEP 2020, (8) 083C01 (2020)

  36. Ruchayskiy, O., Ivashko, A.: Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis. JCAP 1210, 014 (2012)

    Article  ADS  Google Scholar 

  37. Agostini, M. et al.: [GERDA], Results on neutrinoless double-\(\beta\) Decay of \(^{76}\)Ge from Phase I of the GERDA Experiment, Phys. Rev. Lett. 111, (12) 122503 (2013)

  38. Faessler, A., González, M., Kovalenko, S., Šimkovic, F.: Arbitrary mass Majorana neutrinos in neutrinoless double beta decay. Phys. Rev. D 90(9), 096010 (2014)

    Article  ADS  Google Scholar 

  39. Britton, D.I., Ahmad, S., Bryman, D.A., Burnbam, R.A., Clifford, E.T.H., Kitching, P., Kuno, Y., Macdonald, J.A., Numao, T., Olin, A., et al.: Measurement of the pi+ –> e+ neutrino branching ratio. Phys. Rev. Lett. 68, 3000–3003 (1992)

    Article  ADS  Google Scholar 

  40. Britton, D.I., Ahmad, S., Bryman, D.A., Burnham, R.A., Clifford, E.T.H., Kitching, P., Kuno, Y., Macdonald, J.A., Numao, T., Olin, A., et al.: Improved search for massive neutrinos in pi+ –> e+ neutrino decay. Phys. Rev. D 46, R885–R887 (1992)

    Article  ADS  Google Scholar 

  41. Minehart, R.C., Ziock, K.O.H., Marshall, R., Stephens, W.A., Daum, M., Jost, B., Kettle, P.R.: A Search for Admixture of Massive Neutrinos in the Decay \(\pi \rightarrow \mu _{\nu }\). Phys. Rev. Lett. 52, 804–807 (1984)

    Article  ADS  Google Scholar 

  42. Bryman, D.A., Numao, T.: Search for massive neutrinos in pi+ –> mu+ neutrino decay. Phys. Rev. D 53, 558–559 (1996)

    Article  ADS  Google Scholar 

  43. Yamazaki, T., Ishikawa, T., Akiba, Y., Iwasaki, M., Tanaka, K.H., Ohtake, S., Tamura, H., Nakajima, M., Yamanaka, T., Arai, I., et al.: Search for Heavy Neutrinos in Kaon Decay. Conf. Proc. C 840719, 262 (1984)

    Google Scholar 

  44. Artamonov, A.V., et al.: [E949], Search for heavy neutrinos in \(K^+\rightarrow \mu ^{+}\nu _{H}\) decays, Phys. Rev. D 91, (5) 052001 (2015) [erratum: Phys. Rev. D 91, no.5, 059903 (2015) ]

  45. Kusenko, A., Pascoli, S., Semikoz, D.: New bounds on MeV sterile neutrinos based on the accelerator and Super-Kamiokande results. JHEP 11, 028 (2005)

    Article  ADS  Google Scholar 

  46. Hayano, R.S., Taniguchi, T., Yamanaka, T., Tanimori, T., Enomoto, R., Ishibashi, A., Ishikawa, T., Sato, S., Fujii, T., Yamazaki, T., et al.: Heavy neutrino search using k(mu2) decay. Phys. Rev. Lett. 49, 1305 (1982)

    Article  ADS  Google Scholar 

  47. Liventsev, D., et al.: [Belle], Search for heavy neutrinos at Belle. Phys. Rev. D 87, (7) 071102 (2013) [erratum: Phys. Rev. D 95, no.9, 099903 (2017) ]

  48. Kobach, A., Dobbs, S.: Heavy neutrinos and the kinematics of tau decays. Phys. Rev. D 91(5), 053006 (2015)

    Article  ADS  Google Scholar 

  49. Bernardi, G., Carugno, G., Chauveau, J., Dicarlo, F., Dris, M., Dumarchez, J., Ferro-Luzzi, M., Levy, J.M., Lukas, D., Perreau, J.M., et al.: Further limits on heavy neutrino couplings. Phys. Lett. B 203, 332–334 (1988)

    Article  ADS  Google Scholar 

  50. Badier, J., et al.: [NA3], Direct Photon Production From Pions and Protons at 200-GeV/c. Z. Phys. C 31, 341 (1986)

    Article  ADS  Google Scholar 

  51. Bergsma, F., et al.: [CHARM], A search for decays of heavy neutrinos in the mass range 0.5-GeV to 2.8-GeV. Phys. Lett. B 166, 473–478 (1986)

    Article  ADS  Google Scholar 

  52. Orloff, J., Rozanov, A.N., Santoni, C.: Limits on the mixing of tau neutrino to heavy neutrinos. Phys. Lett. B 550, 8–15 (2002)

    Article  ADS  Google Scholar 

  53. Baranov, S.A., Batusov, Y.A., Borisov, A.A., Bunyatov, S.A., Valuev, V.Y., Vovenko, A.S., Goryachev, V.N., Kirsanov, M.M., Kish, D., Klimov, O.L., et al.: Search for heavy neutrinos at the IHEP-JINR neutrino detector. Phys. Lett. B 302, 336–340 (1993)

    Article  ADS  Google Scholar 

  54. Adams et al. C.: [LBNE], The long-baseline neutrino experiment: exploring fundamental symmetries of the universe. (2013) [arXiv:1307.7335 [hep-ex]]

  55. Cooper-Sarkar, A.M., et al.: [WA66], Search for Heavy Neutrino Decays in the BEBC Beam Dump Experiment. Phys. Lett. B 160, 207–211 (1985)

    Article  ADS  Google Scholar 

  56. Gallas, E., et al.: [FMMF], Search for neutral weakly interacting massive particles in the Fermilab Tevatron wide band neutrino beam. Phys. Rev. D 52, 6–14 (1995)

    Article  ADS  Google Scholar 

  57. Vaitaitis, A., et al.: [NuTeV and E815], Search for neutral heavy leptons in a high-energy neutrino beam. Phys. Rev. Lett. 83, 4943–4946 (1999)

    Article  ADS  Google Scholar 

  58. Astier, P., et al.: [NOMAD], Search for heavy neutrinos mixing with tau neutrinos. Phys. Lett. B 506, 27–38 (2001)

    Article  ADS  Google Scholar 

  59. Atre, A., Han, T., Pascoli, S., Zhang, B.: The Search for Heavy Majorana Neutrinos. JHEP 05, 030 (2009)

    Article  ADS  Google Scholar 

  60. Anelli, M., et al.: [SHiP], A facility to search for hidden particles (SHiP) at the CERN SPS. (2015) [arXiv:1504.04956 [physics.ins-det]]

  61. Adriani, O., et al.: [L3], Search for isosinglet neutral heavy leptons in Z0 decays. Phys. Lett. B 295, 371–382 (1992)

    Article  ADS  Google Scholar 

  62. Abreu, P., et al.: [DELPHI], Search for neutral heavy leptons produced in Z decays. Z. Phys. C 74, 57-71 (1997) [erratum: Z. Phys. C 75, 580 (1997)]

  63. Basso, L., Fischer, O., van der Bij, J.J.: Precision tests of unitarity in leptonic mixing. EPL 105, (1) 11001 (2014)

  64. Akhmedov, E., Kartavtsev, A., Lindner, M., Michaels, L., Smirnov, J.: Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos. JHEP 05, 081 (2013)

    Article  ADS  Google Scholar 

  65. Achard, P., et al.: [L3], Search for heavy isosinglet neutrino in \(e^{+} e^{-}\) annihilation at LEP. Phys. Lett. B 517, 67–74 (2001)

    Article  ADS  Google Scholar 

  66. Banerjee, S., Dev, P.S.B., Ibarra, A., Mandal, T., Mitra, M.: Prospects of Heavy Neutrino Searches at Future Lepton Colliders. Phys. Rev. D 92, 075002 (2015)

    Article  ADS  Google Scholar 

  67. Khachatryan, V., et al.: [CMS], Search for heavy Majorana neutrinos in \(\mu ^{\pm } \mu ^{\pm }+\) jets events in proton-proton collisions at \(\sqrt{s}\) = 8 TeV. Phys. Lett. B 748, 144–166 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. S. Bhupal Dev and Sudhansu S. Biswal for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lopamudra Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, L. Probing Sterile Neutrinos Using Decay Width Measurements at Colliders. Int J Theor Phys 61, 200 (2022). https://doi.org/10.1007/s10773-022-05194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05194-8

Keywords

Navigation