Skip to main content
Log in

Quantum Information Splitting of an Arbitrary Five-Qubit State Using Four-Qubit Entangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum information splitting is one of the important applications of quantum entanglement. In this paper, we propose a scheme for information splitting of arbitrary five-qubit state using a four-qubit entangled state as the quantum channel. In the scheme, Alice performs a simple gate operation and single-qubit measurement on the qubit, and Bob can reconstruct the initial state by performing the appropriate unitary operation and introducing three auxiliary qubits based on Alice’s measurement results. We validate the scheme on the IBM Quantum Experience platform and also ensure the security of the scheme by introducing four quantum states. Finally, this scheme is compared with the other two schemes, and the results show that our scheme is sufficiently superior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geihs, M., Nikiforov, O., Demirel, D., et al.: The status of quantum-key-distribution-based long-term secure internet communication[J]. IEEE Trans Sustain Comput. 1–1 (2019)

  2. Fu, Y., Hong, Y., Quek, T., et al.: Scheduling policies for quantum key distribution enabled communication networks[J]. IEEE Wireless Comm Lett. PP(99), 1–1 (2020)

    Google Scholar 

  3. Kundu, N.K., Dash, S.P., Mckay, M.R., et al.: MIMO Terahertz Quantum Key Distribution[J]. (2021)

  4. Guo, Y., Peng, Q., Liao, Q., et al.: Trans-media continuous-variable quantum key distribution via untrusted entanglement source[J]. IEEE Photonics J. (2021)

  5. Zhan, Y.B., Zhang, L.L., Zhang, Q.Y.: Quantum secure direct communication by entangled qutrits and entanglement swapping[J]. Opt. Commun. 282(23), 4633–4636 (2009)

    Article  ADS  Google Scholar 

  6. Nie, Y.Y., Wei, X.U., Zhang, Q.N., et al.: Controlled quantum secure direct communication by using five-qubit cluster states[J]. Guangzi Xuebao/Acta Photonica Sinica. (2014)

  7. Sun, Z., Song, L., Huang, Q., et al.: Toward practical quantum secure direct communication: a quantum-memory-free protocol and code design[J]. IEEE Trans. Commun. PP(99), 1–1 (2020)

    Google Scholar 

  8. Pan, D., Li, K., Dong, R., et al.: Single-photon-memory two-step quantum secure direct communication relying on Einstein-Podolsky-Rosen pairs[J]. IEEE. Access. PP(99), 1–1 (2020)

    Google Scholar 

  9. Yoo Y. A Post-Quantum Digital Signature Scheme Based on Supersingular Isogenies[J]. International Conference on Financial Cryptography & Data Security, 2017

  10. Chen, J.M., Zhang, H., Zhou, X.Y., et al.: Practical decoy-state quantum digital signature with optimized parameters[J]. Physica A: Stat Mech Appl. 535, 122341 (2019)

    Article  MathSciNet  Google Scholar 

  11. Zhang H., An X. B., Zhang C. H., Zhang C. M., & Wang Q.. (2019). High-efficiency quantum digital signature scheme for signing long messages. Quantum Inform Process

  12. Qiu, L., Cai, F., Xu, G.: Quantum digital signature for the access control of sensitive data in the big data era[J]. Futur. Gener. Comput. Syst. 86(SEP.), 372–379 (2018)

    Article  Google Scholar 

  13. Zhao, X., Li, Y.Q., Cheng, L.Y., et al.: The quantum dense coding in a two atomic system under the non-Markovian environment[J]. Int. J. Theor. Phys. 58(2), 493–501 (2019)

    Article  Google Scholar 

  14. Zhou, Y.S., Wang, F., Luo, M.X.: Efficient Superdense coding with W states[J]. Int. J. Theor. Phys. (2018)

  15. Dense coding in a three-qubit Heisenberg spin XXZ chain[J]. Journal of. Quantum Optics. 22(3), 215–220 (2016)

  16. Li, Y.Q., Li, X., Jia, X.F., et al.: Quantum dense coding properties between two spatially separated atoms in free space[J]. Int. J. Theor. Phys. 59(3), 1–9 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. Zhang, Y.X., Cao, C., Wang, T.J., et al.: The study of security during quantum dense coding in high-dimensions[J]. Int. J. Theor. Phys. 3, (2020)

  18. Zhao, N., Li, W.: Quantum teleportation of ten-qubit state based on the cluster state Quantum Channel[J]. Int. J. Theor. Phys. 59(7), 2147–2154 (2020)

    Article  MathSciNet  Google Scholar 

  19. Huo, G.W., Zhang, T.Y., Zha, X.W., et al.: Controlled asymmetric bidirectional hybrid of remote state preparation and quantum teleportation[J]. Int. J. Theor. Phys. (2019)

  20. Verma, V.: Bidirectional quantum teleportation by using two GHZ-states as the Quantum Channel[J]. IEEE Commun. Lett. PP(99), 1–1 (2020)

    Google Scholar 

  21. Chen, J., Li, D., Liu, M., et al.: Bidirectional quantum teleportation by using a four-qubit GHZ state and two bell states[J]. IEEE Access. 8, 1–1 (2020)

    Article  Google Scholar 

  22. Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hillery, M., Buzcaronek, V., et al.: Quantum secret sharing. [J]. Phys. Rev. A. 1999, 59 (1829)

    Google Scholar 

  24. Zuo, X.Q., Liu, Y.M., Zhang, W., et al.: Minimal classical communication COST and measurement complexity in splitting two-qubit quantum information via asymmetric w states[j]. Int J Quantum Inform. 6(06), (2008)

  25. Pan, G.X., Liu, Y.M., Yin, X.F., et al.: A quantum splitting scheme of arbitrary two-qubit STATE using four-qubit cluster STATE[j]. Int J Quantum Inform. 06(05), 1033–1040 (2008)

    Article  Google Scholar 

  26. Zhang, Q.Y., Zhan, Y.B., Zhang, L.L., et al.: Schemes for splitting quantum information via tripartite entangled states[J]. Int. J. Theor. Phys. (2009)

  27. 李渊华, 金翠平, 王永胜,等. 基于6粒子团簇态实现2粒子任意态的量子信息分离[J]. 江西师范大学学报(自然版), 2010, 34(005):502–505

  28. 潘桂侠. 用GHZ态实现任意两粒子态的量子信息分离方案[J]. 量子电子学报. 27(005), 573–579 (2010)

  29. Nie, Y.Y., Li, Y.H., Jin, C.P., et al.: Quantum information splitting of an arbitrary multi-qubit GHZ-type state by using a four-qubit cluster state[J]. Int. J. Theor. Phys. 50(9), 2799–2804 (2011)

    Article  MathSciNet  Google Scholar 

  30. Nie, Y.Y., Li, Y.H., Liu, J.C., et al.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a bell-state[J]. Quantum Inf. Process. 11(2), 563–569 (2012)

    Article  MathSciNet  Google Scholar 

  31. Yan, C.: Quantum information splitting of an arbitrary three-qubit state using a seven-qubit entangled state[J]. Int. J. Theor. Phys. 53(2), 524–532 (2014)

    Article  Google Scholar 

  32. Lu, J.J., Wang, J.H.: Quantum information splitting of an arbitrary three-qubit state via a seven-qubit maximally entangled state[J]. Int. J. Theor. Phys. 53(9), 3142–3146 (2014)

    Article  Google Scholar 

  33. Wang, R.J., Li, D.F., Deng, F.H.: Quantum information splitting of a two-qubit bell state using a five-qubit entangled state[J]. Int. J. Theor. Phys. 39(4), (2015)

  34. Li, D.F., Wang, R.J., Zhang, F.L.: Quantum information splitting of a two-qubit bell state using a four-qubit entangled state[J]. Chinese Phys C. 39(4), (2015)

  35. Yin, A., Wang, J.: Quantum information splitting of arbitrary three-qubit state by using five-qubit cluster state and GHZ-state[J]. Int. J. Theor. Phys. 55(12), 1–15 (2016)

    Article  Google Scholar 

  36. Yang, Y., et al.: Quantum information splitting of arbitrary two-qubit state via a five-qubit cluster state and a bell-state. Int. J. Theor. Phys. 59(1), 1–13 (2020)

    Article  MathSciNet  Google Scholar 

  37. Sk, R., Baishya, A., Behera, B.K., et al.: Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state[J]. Quantum Inf. Process. 19(3), 87 (2020)

    Article  ADS  Google Scholar 

  38. Kumar, A., Haddadi, S., Pourkarimi, M.R., et al.: Experimental realization of controlled quantum teleportation of arbitrary qubit states via cluster states[J]. Sci. Rep.

  39. Chatterjee, Y., Devrari, V., Behera, B.K., et al.: Experimental Realization of Quantum Teleportation Using Coined Quantum Walks[J] (2019)

    Google Scholar 

  40. 陈金莲, 李冬芬, 周覃,等. 未知六粒子纠缠态的量子隐形传态及原理验证[J]. 量子电子学报, 2019(4)

  41. Silva, V.: Fun with quantum games: programming quantum rigs in the cloud using python. Quantum Assembly Language IBM QExperience[M]. (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfen Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science Foundation of China (61802033,62172060),Sichuan Regional Innovation Cooperation Project(2020YFQ0018), Sichuan Science and Technology Program (2021YFG0027,2020YFG0475,2018GZ0087,2019YJ0543),Key R&D Project of Sichuan Province Science and Technology Plan (2020YFS0445).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, D., Zheng, Y. et al. Quantum Information Splitting of an Arbitrary Five-Qubit State Using Four-Qubit Entangled States. Int J Theor Phys 61, 220 (2022). https://doi.org/10.1007/s10773-022-05178-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05178-8

Keywords

Navigation