Skip to main content
Log in

Gravitational Relaxation of Electroweak Hierarchy Problem

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the present paper, we discuss gravitational relaxation models for the electroweak hierarchy problem. We show that modified gravity can naturally relax the electroweak hierarchy problem where conformal transformation provides a crucial rule about what modified gravity theories are favored to relax the electroweak hierarchy. The conformal transformation connects different gravitational theories and rescaling the metric changes the dimensional parameters like the Higgs mass or the cosmological constant in different frames drastically. When the electroweak scale is naturally realized by dynamical and running behavior of dilatonic scalar field or scaling parameter, the modified gravity theories can relax the electroweak hierarchy problem. We discuss the theoretical and phenomenological validity of the gravitational relaxation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. On the other hand, the cosmological constant problem is more serious from the viewpoint of the naturalness or hierarchy problem. The quantum radiative corrections to the vacuum energy density ρvacuum which is dubbed zero-point vacuum energy enlarges up to the cut-off scale MUV as follows:

    $$\delta{ \rho }_{vacuum } =\frac{1}{2}{\int}^{{ M }_{\text{ UV }} } { \frac { { d }^{3 }k }{ { \left( 2\pi \right) }^{3 } } \sqrt { { k }^{2 }+{ m }^{2 } } } =\frac { { M }^{4}_{\text{ UV }}}{ 16{ \pi }^{2 } } +\frac{ { m }^{2 }{ M }^{2}_{\text{ UV } } }{ 16{ \pi }^{2 } } +\frac { { m }^{4 } }{ 64{ \pi }^{2 } } \log \left( \frac { { m }^{2 } } { M }^{2}_{\text{ UV } } \right) +{\cdots} ,$$

    which is much larger than the dark energy 2.4 × 10− 3 eV in the current Universe.

  2. The five-dimensional metric in the Randall-Sundrum model takes the form

    $$\begin{array}{@{}rcl@{}} { ds }^{2 }={ e }^{-2k{ r }_{c }\phi }{ \eta }_{\mu \nu }{ d }x^{\mu }{ d }x^{\nu }+{ r }_{c }^{2 }d{ \phi }^{2 } , \end{array}$$

    where ημν is the 4D Minkowski metric.

  3. In the Randall-Sundrum model, the four-dimensional action for the gravity sector is given by

    $$\begin{array}{@{}rcl@{}} { S }_{\text{gravity }}\supset \int { { d }^{4 }x } \int { d\phi }\ 2{ M }^{3 }{ r }_{c }{ e }^{-2k{ r }_{c }\left| \phi \right| }\sqrt { -\overline { g } }\ \overline { R }, \end{array}$$

    where M is the five-dimensional Planck scale and \(\overline { R }\) is constructed by the rescaling metric \(\overline { g }_{\mu \nu }\). Ther 4D Planck scale Mpl can be determined as follows:

    $$\begin{array}{@{}rcl@{}} M_{\text{pl}}^{2}= { M }^{3 }{ r }_{c } \int { d\phi }\ { e }^{-2k{ r }_{c }\left| \phi \right| }= \frac { { M }^{3 } }{ k } \left\{ 1-{ e }^{-2k{ r }_{c }\pi } \right\}. \end{array}$$
  4. Polyakov proposed that the cosmological constant could be screened by the IR behavior of quantum gravity and the behavior can be translated by the RG running of the auxiliary gravitational field [18, 19]. The electroweak hierarchy is also discussed by Ref. [23].

References

  1. Wilson, K.G., Kogut, J.B.: The Renormalization group and the epsilon expansion. Phys. Rept. 12, 75–200 (1974)

    Article  ADS  Google Scholar 

  2. ’t Hooft, G.: Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Sci. Ser. B 59, 135 (1980)

    Google Scholar 

  3. Dine, M.: Naturalness Under Stress. Ann. Rev. Nucl. Part. Sci. 65, 43–62 (2015). arXiv:1501.01035

    Article  ADS  Google Scholar 

  4. Giudice, G.F.: Naturalness after LHC8. PoS EPS-HEP 2013, 163 (2013). arXiv:1307.7879

    Google Scholar 

  5. ATLAS, CMS collaboration, Aad, G., et al: Combined Measurement of the Higgs Boson Mass in pp Collisions at √= 7 and 8 TeV with the ATLAS and CMS Experiments. Phys. Rev. Lett. 114, 191803 (2015). arXiv:1503.07589

    Article  ADS  Google Scholar 

  6. ATLAS collaboration, Aad, G., et al: Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC. Phys. Lett. B 726, 88–119 (2013). arXiv:1307.1427

    Article  ADS  Google Scholar 

  7. CMS collaboration, Chatrchyan, S., et al: Measurement of the properties of a Higgs boson in the four-lepton final state. Phys. Rev. D 89, 092007 (2014). arXiv:1312.5353

    Article  ADS  Google Scholar 

  8. Graham, P.W., Kaplan, D.E., Rajendran, S.: Cosmological relaxation of the electroweak scale. Phys. Rev. Lett. 115, 221801 (2015). arXiv:1504.07551

    Article  ADS  Google Scholar 

  9. Espinosa, J.R., Grojean, C., Panico, G., Pomarol, A., Pujolàs, O., Servant, G.: Cosmological Higgs-Axion interplay for a naturally small electroweak scale. Phys. Rev. Lett. 115, 251803 (2015). arXiv:1506.09217

    Article  ADS  Google Scholar 

  10. Hardy, E.: Electroweak relaxation from finite temperature. JHEP 11, 077 (2015). arXiv:1507.07525

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Patil, S.P., Schwaller, P.: Relaxing the electroweak scale: The role of broken dS symmetry. JHEP 02, 077 (2016). arXiv:1507.08649

    Article  ADS  Google Scholar 

  12. Batell, B., Giudice, G.F., McCullough, M.: Natural heavy supersymmetry. JHEP 12, 162 (2015). arXiv:1509.00834

    ADS  MathSciNet  MATH  Google Scholar 

  13. Di Chiara, S., Kannike, K., Marzola, L., Racioppi, A., Raidal, M., Spethmann, C.: Relaxion cosmology and the price of fine-tuning. Phys. Rev. D 93, 103527 (2016). arXiv:1511.02858

    Article  ADS  Google Scholar 

  14. Matsedonskyi, O.: Mirror cosmological relaxation of the electroweak scale. JHEP 01, 063 (2016). arXiv:1509.03583

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Evans, J.L., Gherghetta, T., Nagata, N., Thomas, Z: Naturalizing supersymmetry with a two-field relaxion mechanism, arXiv:1602.04812

  16. Hook, A., Marques-Tavares, G: Relaxation from particle production, arXiv:1607.01786

  17. Abbott, L.F.: A mechanism for reducing the value of the cosmological constant. Phys. Lett. B 150, 427–430 (1985)

    Article  ADS  Google Scholar 

  18. Polyakov, A.m.: Phase transitions and the universe. Sov. Phys. Usp. 25, 187 (1982)

    Article  ADS  Google Scholar 

  19. Polyakov, AM: String theory as a universal language. Phys. Atom. Nucl. 64, 540–547 (2001). arXiv:hep-th/0006132

    Article  ADS  MATH  Google Scholar 

  20. Jackiw, R., Nunez, C., Pi, S.Y.: Quantum relaxation of the cosmological constant. Phys. Lett. A 347, 47–50 (2005). arXiv:hep-th/0502215

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Demir, D.A.: Gravi-natural Higgs and conformal new physics, arXiv:1207.4584

  22. Lin, C.: Large hierarchy from non-minimal coupling, arXiv:1405.4821

  23. Kobakhidze, A.: Quantum relaxation of the Higgs mass. Eur. Phys. J. C 75, 384 (2015). arXiv:1506.04840

    Article  ADS  Google Scholar 

  24. Kaloper, N., Padilla, A.: Sequestering the standard model vacuum energy. Phys. Rev. Lett. 112, 091304 (2014). arXiv:1309.6562

    Article  ADS  Google Scholar 

  25. Kaloper, N., Padilla, A.: Vacuum energy sequestering: the framework and its cosmological consequences. Phys. Rev. D 90, 084023 (2014). arXiv:1406.0711

    Article  ADS  Google Scholar 

  26. Kaloper, N., Padilla, A.: Sequestration of vacuum energy and the end of the universe. Phys. Rev. Lett. 114, 101302 (2015). arXiv:1409.7073

    Article  ADS  Google Scholar 

  27. Kaloper, N., Padilla, A., Stefanyszyn, D., Zahariade, G.: Manifestly local theory of vacuum energy sequestering. Phys. Rev. Lett. 116, 051302 (2016). arXiv:1505.01492

    Article  ADS  MATH  Google Scholar 

  28. Kaloper, N., Padilla, A., Stefanyszyn, D.: Sequestering effects on and of vacuum decay. Phys. Rev. D 94, 025022 (2016). arXiv:1604.04000

    Article  ADS  Google Scholar 

  29. Kaloper, N., Padilla, A: Vacuum energy sequestering and graviton loops, arXiv:1606.04958

  30. Kaiser, D.I.: Conformal transformations with multiple scalar fields. Phys. Rev. D 81, 084044 (2010). arXiv:1003.1159

    Article  ADS  Google Scholar 

  31. Umezu, K.-i., Ichiki, K., Yahiro, M.: Cosmological constraints on Newton’s constant. Phys. Rev. D 72, 044010 (2005). arXiv:astro-ph/0503578

    Article  ADS  Google Scholar 

  32. Galli, S., Melchiorri, A., Smoot, G.F., Zahn, O.: From Cavendish to PLANCK: constraining Newton’s gravitational constant with CMB temperature and polarization anisotropy. Phys. Rev. D 80, 023508 (2009). arXiv:0905.1808

    Article  ADS  Google Scholar 

  33. Faraoni, V., Gunzig, E.: Einstein frame or Jordan frame? Int. J. Theor. Phys. 38, 217–225 (1999). arXiv:astro-ph/9910176

    Article  MathSciNet  MATH  Google Scholar 

  34. Capozziello, S., Martin-Moruno, P., Rubano, C.: Physical non-equivalence of the Jordan and Einstein frames. Phys. Lett. B 689, 117–121 (2010). arXiv:1003.5394

    Article  ADS  MathSciNet  Google Scholar 

  35. Capozziello, S., Saez-Gomez, D.: Conformal frames and the validity of Birkhoff’s theorem. AIP Conf. Proc. 1458, 347–350 (2011). arXiv:1202.2540

    ADS  Google Scholar 

  36. Deruelle, N., Sasaki, M.: Conformal equivalence in classical gravity: The example of ’Veiled’ general relativity. Springer Proc. Phys. 137, 247–260 (2011). arXiv:1007.3563

    Article  MathSciNet  MATH  Google Scholar 

  37. Steinwachs, C.F., Kamenshchik, Yu A.: Non-minimal Higgs Inflation and Frame Dependence in Cosmology, arXiv:1301.5543

  38. Calmet, X., Yang, T. -C.: Frame transformations of gravitational theories. Int. J. Mod. Phys. A 28, 1350042 (2013). arXiv:1211.4217

    Article  ADS  MathSciNet  Google Scholar 

  39. Domenech, G., Sasaki, M.: Conformal frame dependence of inflation. JCAP 1504, 022 (2015). arXiv:1501.07699

    Article  ADS  MathSciNet  Google Scholar 

  40. Postma, M., Volponi, M.: Equivalence of the Einstein and Jordan frames. Phys. Rev. D 90, 103516 (2014). arXiv:1407.6874

    Article  ADS  Google Scholar 

  41. Randall, L., Sundrum, R.: A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999). arXiv:hep-ph/9905221

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Wetterich, C.: Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 302, 668–696 (1988)

    Article  ADS  Google Scholar 

  43. Wetterich, C.: The Cosmon model for an asymptotically vanishing time dependent cosmological ’constant’. Astron. Astrophys. 301, 321–328 (1995). arXiv:hep-th/9408025

    ADS  Google Scholar 

  44. Wetterich, C.: Conformal fixed point, cosmological constant and quintessence. Phys. Rev. Lett. 90, 231302 (2003). arXiv:hep-th/0210156

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Wetterich, C.: Cosmon inflation. Phys. Lett. B 726, 15–22 (2013). arXiv:1303.4700

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Avelino, P.P.: Vacuum energy sequestering and cosmic dynamics. Phys. Rev. D 90, 103523 (2014). arXiv:1410.4555

    Article  ADS  Google Scholar 

  47. Anderson, J.L., Finkelstein, D.: Cosmological constant and fundamental length. Am. J. Phys. 39, 901–904 (1971)

    Article  ADS  Google Scholar 

  48. Buchmuller, W., Dragon, N.: Einstein gravity from restricted coordinate invariance. Phys. Lett. B 207, 292–294 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  49. Buchmuller, W., Dragon, N.: Gauge fixing and the cosmological constant. Phys. Lett. B 223, 313–317 (1989)

    Article  ADS  Google Scholar 

  50. Henneaux, M., Teitelboim, C.: The cosmological constant and general covariance. Phys. Lett. B 222, 195–199 (1989)

    Article  ADS  Google Scholar 

  51. Unruh, W.G.: A unimodular theory of canonical quantum gravity. Phys. Rev. D 40, 1048 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  52. Nojiri, S: A simple solution for one of the cosmological constant problems, arXiv:1601.02203

  53. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Bounce universe history from unimodular F(R) gravity. Phys. Rev. D 93, 084050 (2016). arXiv:1601.04112

    Article  ADS  MathSciNet  Google Scholar 

  54. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Unimodular-mimetic cosmology. Class Quant. Grav. 33, 125017 (2016). arXiv:1601.07057

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Nojiri, S., Odintsov, S.D., Oikonomou, V.K: Newton law in covariant unimodular F(R) gravity, arXiv:1605.00993

  56. Zee, A.: Broken-symmetric theory of gravity. Phys. Rev. Lett. 42, 417–421 (1979)

    Article  ADS  Google Scholar 

  57. Zee, A.: Horizon problem and the broken-symmetric theory of gravity. Phys. Rev. Lett. 44, 703–706 (1980)

    Article  ADS  Google Scholar 

  58. Smolin, L.: Towards a theory of space-time structure at very short distances. Nucl. Phys. B 160, 253–268 (1979)

    Article  ADS  Google Scholar 

  59. Adler, S.L.: Einstein gravity as a symmetry breaking effect in quantum field theory. Rev. Mod. Phys. 54, 729 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  60. Dehnen, H., Frommert, H., Ghaboussi, F.: Higgs field gravity. Int. J. Theor. Phys. 29, 537–546 (1990)

    Article  MATH  Google Scholar 

  61. Dehnen, H., Frommert, H., Ghaboussi, F.: Higgs field and a new scalar - tensor theory of gravity. Int. J. Theor. Phys. 31, 109–114 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  62. Spokoiny, B.L.: Inflation and generation of perturbations in broken symmetric theory of gravity. Phys. Lett. B 147, 39–43 (1984)

    Article  ADS  Google Scholar 

  63. Accetta, F.S., Zoller, D.J., Turner, M.S.: Induced gravity inflation. Phys. Rev. D 31, 3046 (1985)

    Article  ADS  Google Scholar 

  64. Lucchin, F., Matarrese, S., Pollock, M.D.: Inflation with a nonminimally coupled scalar field. Phys. Lett. B 167, 163–168 (1986)

    Article  ADS  Google Scholar 

  65. Fakir, R., Unruh, W.G.: Induced gravity inflation. Phys. Rev. D 41, 1792–1795 (1990)

    Article  ADS  Google Scholar 

  66. Kaiser, D.I.: Constraints in the context of induced gravity inflation. Phys. Rev. D 49, 6347–6353 (1994). arXiv:astro-ph/9308043

    Article  ADS  Google Scholar 

  67. Kaiser, D.I.: Induced gravity inflation and the density perturbation spectrum. Phys. Lett. B 340, 23–28 (1994). arXiv:astro-ph/9405029

    Article  ADS  Google Scholar 

  68. Cervantes-Cota, J.L., Dehnen, H.: Induced gravity inflation in the SU(5) GUT. Phys. Rev. D 51, 395–404 (1995). arXiv:astro-ph/9412032

    Article  ADS  Google Scholar 

  69. Cervantes-Cota, J.L., Dehnen, H.: Induced gravity inflation in the standard model of particle physics. Nucl. Phys. B 442, 391–412 (1995). arXiv:astro-ph/9505069

    Article  ADS  Google Scholar 

  70. Gonderinger, M., Li, Y., Patel, H., Ramsey-Musolf, M.J.: Vacuum stability, perturbativity, and scalar singlet dark matter. JHEP 01, 053 (2010). arXiv:0910.3167

    Article  ADS  MATH  Google Scholar 

  71. Elias-Miro, J., Espinosa, J.R., Giudice, G.F., Lee, H.M., Strumia, A.: Stabilization of the electroweak vacuum by a scalar threshold effect. JHEP 06, 031 (2012). arXiv:1203.0237

    Article  ADS  Google Scholar 

  72. Iso, S., Okada, N., Orikasa, Y.: Classically conformal B L extended standard model. Phys. Lett. B 676, 81–87 (2009). arXiv:0902.4050

    Article  ADS  Google Scholar 

  73. Iso, S., Okada, N., Orikasa, Y.: The minimal B-L model naturally realized at TeV scale. Phys. Rev. D 80, 115007 (2009). arXiv:0909.0128

    Article  ADS  Google Scholar 

  74. Iso, S., Orikasa, Y.: TeV scale B-L model with a flat Higgs potential at the Planck scale - in view of the hierarchy problem -. PTEP 2013, 023B08 (2013). arXiv:1210.2848

    Google Scholar 

  75. Hashimoto, M., Iso, S., Orikasa, Y.: Radiative symmetry breaking at the Fermi scale and flat potential at the Planck scale. Phys. Rev. D 89, 016019 (2014). arXiv:1310.4304

    Article  ADS  Google Scholar 

  76. Bardeen, W.A.: On naturalness in the standard model. In: Ontake Summer Institute on Particle Physics Ontake Mountain, Japan, August 27-September 2, 1995 (1995)

  77. Ruf, M.S., Steinwachs, C.F.: Quantum equivalence of f(R) gravity and scalar-tensor theories. Phys. Rev. D 97, 044050 (2018). arXiv:1711.07486

    Article  ADS  MathSciNet  Google Scholar 

  78. Ohta, N.: Quantum equivalence of f(R) gravity and scalar–tensor theories in the Jordan and Einstein frames. PTEP 2018, 033B02 (2018). arXiv:1712.05175

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Matsui.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsui, H., Matsumoto, Y. Gravitational Relaxation of Electroweak Hierarchy Problem. Int J Theor Phys 61, 182 (2022). https://doi.org/10.1007/s10773-022-05168-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05168-w

Navigation