Skip to main content
Log in

Improvement of information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

There is a quantum dialogue (QD) protocol by Ye et al. based on single photons in both polarization and spatial-mode degrees of freedom. In order to make two communicants share the initial states of encoding photons, the protocol has employed auxiliary photons the same as encoding ones. However, when they arrive at the responder, auxiliary photons cannot be measured at once. This leads to an extra demand of responders on keeping photons. But the technology of storing photons for some time is difficult to implement at this stage. For this reason, Ye et al.’s QD protocol is lacking in practicability on that. To enhance practicability, the paper uses auxiliary photons different from encoding ones and enables them measured immediately on arrival. This not only is able to make responders know encoding photons’ initial states as well, but also does not need to keep photons. This new measure avails of the protocol practicability greatly. So the proposed QD protocol can be thought of as an improvement of Ye et al.’s QD protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Z. J., Man, Z. X.: Secure direct bidirectional communication protocol using the Einstein-Podolsky-Rosen pair block. (2004). http://arxiv.org/pdf/quant-ph/0403215.pdf

  2. Zhang, Z. J., Man, Z. X. Secure bidirectional quantum communication protocol without quantum channel. (2004). http://arxiv.org/pdf/quant-ph/0403217.pdf

  3. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  4. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  5. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  8. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  9. Li, X.H., Li, C.Y., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–2153 (2007)

    Article  Google Scholar 

  10. Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)

    Article  ADS  Google Scholar 

  11. Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)

    Article  ADS  Google Scholar 

  12. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon fourqubit cluster states. Int. J. Theor. Phys. 51, 1946–1952 (2012)

    Article  Google Scholar 

  13. Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial- mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)

    Article  Google Scholar 

  14. Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)

    Article  ADS  Google Scholar 

  15. Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)

    Article  ADS  Google Scholar 

  16. Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15(7), 1418–1420 (2006)

    Article  Google Scholar 

  17. Man, Z.X., Xia, Y.J., Nguyen, B.A.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B-At. Mol. Opt. Phys. 39(18), 3855–3863 (2006)

    Article  ADS  Google Scholar 

  18. Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. China Ser. GPhys. Mech. Astron. 50(5), 558–562 (2007)

    Article  ADS  Google Scholar 

  19. Shan, C.J., Liu, J.B., Cheng, W.W., Liu, T.K., Huang, Y.X., Li, H.: Bidirectional quantum secure direct communication in driven cavity QED. Mod. Phys. Lett. B 23(27), 3225–3234 (2009)

    Article  ADS  Google Scholar 

  20. Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum secure direct communication by using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  21. Tan, Y.G., Cai, Q.Y.: Classical correlation in quantum dialogue. Int. J. Quant. Inform. 6(2), 325–329 (2008)

    Article  Google Scholar 

  22. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Comment on: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 372(18), 3333–3336 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  23. Gao, F., Guo, F. Z., Wen, Q. Y., Zhu, F. C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G- Phys. Mech. Astron. 51, (5), 559–566 (2008)

  24. Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private Bell state. Opt. Commun. 282(12), 2460–2463 (2009)

    Article  ADS  Google Scholar 

  25. Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)

    Article  ADS  Google Scholar 

  26. Shi, G.F.: Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt. Commun. 283(24), 5275–5278 (2010)

    Article  ADS  Google Scholar 

  27. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)

    Article  ADS  Google Scholar 

  28. Ye, T.Y.: Large payload bidirectional quantum secure direct communication without information leakage. Int. J. Quant. Inform. 11(5), 1350051 (2013)

    Article  MathSciNet  Google Scholar 

  29. Ye, T.Y.: Quantum secure dialogue with quantum encryption. Commun. Theor. Phys. 62(3), 338–342 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  30. Huang, L.Y., Ye, T.Y.: A kind of quantum dialogue protocols without information leakage assisted by auxiliary quantum operation. Int. J. Theor. Phys. 54(8), 2494–2504 (2015)

    Article  MathSciNet  Google Scholar 

  31. Wang, L.L., Ma, W.P., Shen, D.S., Wang, M.L.: Efficient bidirectional quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 54, 3443–3453 (2015)

    Article  MathSciNet  Google Scholar 

  32. Zhang, C., Situ, H.Z.: Information leakage in efficient bidirectional quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 4702–4708 (2016)

    Article  Google Scholar 

  33. Wang, L.L., Ma, W.P., Wang, M.L., Shen, D.S.: Three-party quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 2490–2499 (2016)

    Article  Google Scholar 

  34. Ye, T.Y., Li, H.K., Hu, J.L.: Information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf Process 20(6), 209 (2021). https://doi.org/10.1007/s11128-021-03120-1

    Article  MathSciNet  ADS  Google Scholar 

  35. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)

    Article  ADS  Google Scholar 

  36. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)

    Article  ADS  Google Scholar 

  37. Shannon, C.E.: Communication theory of secrecy system. Bell. Syst. Tech. J. 28, 656–715 (1949)

    Article  MathSciNet  Google Scholar 

  38. Bennett, C. H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 175–179 (1984)

  39. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  40. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author Lang Yan-Feng thanks Daughter Lang Duo-Zi for her support on this work.

Author information

Authors and Affiliations

Authors

Contributions

Yan-Feng Lang finished the whole manuscript.

Corresponding author

Correspondence to Yan-Feng Lang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, YF. Improvement of information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom. Int J Theor Phys 61, 173 (2022). https://doi.org/10.1007/s10773-022-05162-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05162-2

Keywords

Navigation