Skip to main content
Log in

Quantum Fisher Information Dynamics in the Presence of Intrinsic Decoherence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the dynamics of quantum Fisher information (QFI) in two qubits when coupled to an external magnetic field. Isotropy, Dzyaloshinskii-Moriya interaction strength, magnetic field strength, and decoherence are system parameters used to characterize the QFI function. We show that when different parameters are used to characterize QFI, the dynamical layout changes significantly in both quantitative and qualitative terms. The estimation of various parameters is found to be greatly influenced by the relative parameter values as well as the type of QFI function used. The QFI functions showed a sudden rise and mostly a gradual decrease under Milburn decoherence, eventually reaching zero or non-zero final saturation levels. Furthermore, we discovered that the probability of all parameters being estimated remained high only for the initial values of the interaction time intervals instead of the later time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rissanen, J.J.: Fisher information and stochastic complexity. IEEE Transactions on Information Theory 42, 40 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Physi. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alipour, S., Mehboudi, M., Rezakhani, A.T.: Quantum metrology in open systems: dissipative cramér-rao bound. Phys. Rev. Lett. 112, 120405 (2014)

    Article  ADS  Google Scholar 

  4. Liu, Y., Yu, M., Yang, P., Gong, M., Cao, Q., Zhang, S., Cai, J.: Saturating the quantum Cramér-Rao bound and measuring the related quantum Fisher information in a nitrogen-vacancy center in diamond. arXiv:2003.08373 (2020)

  5. Liu, J., Yuan, H., Lu, X.M., Wang, X.: Quantum Fisher information matrix and multiparameter estimation. J. Phys. A: Math. Theor. 53, 023001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Helstron, C.W.: Quantum etection and estimation theory. Academic Press, New York (1967)

    Google Scholar 

  7. Roy, S.M., Braunstein, S.L.: Exponentially enhanced quantum metrology. Phys. Rev. Lett. 100, 220501 (2008)

    Article  ADS  Google Scholar 

  8. Boixo, S., Datta, A., Davis, M.J., Flammia, S.T., Shaji, A., Caves, C.M.: Quantum metrology: Dynamics versus entanglement. Phys. Rev. Lett. 101, 040403 (2008)

    Article  ADS  Google Scholar 

  9. Ma, J., Huang, Y.X., Wang, X., Sun, C.P.: Quantum Fisher information of the Greenberger-Horne-Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011)

    Article  ADS  Google Scholar 

  10. Monras, A., Paris, M.G.: Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 98, 160401 (2007)

    Article  ADS  Google Scholar 

  11. Luo, S.: Wigner-yanase skew information vs. quantum Fisher information. Proc. Amer. Math. Soc 132, 885 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Luo, S.: Quantum Fisher information and uncertainty relations. Lett. Math. Phys. 53, 243 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Invernizzi, C., Korbman, M., Venuti, L.C., Paris, M.G.: Optimal quantum estimation in spin systems at criticality. Phy. Rev. A 78, 042106 (2008)

    Article  ADS  Google Scholar 

  14. Wang, T.L., Wu, L.N., Yang, W., Jin, G.R., Lambert, N., Nori, F.: Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys. 16, 063039 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zanardi, P., Paris, M.G., Venuti, L.C.: Quantum criticality as a resource for quantum estimation. Phys. Rev. A 78(4), 042105 (2008)

    Article  ADS  Google Scholar 

  16. Demkowicz-Dobrzański, R., Markiewicz, M.: Quantum computation speedup limits from quantum metrological precision bounds. Phys. Rev. A 91, 062322 (2015)

    Article  ADS  Google Scholar 

  17. Tóth, G., Fröwis, F.: Uncertainty relations with the variance and the quantum Fisher information based on convex decompositions of density matrices. arXiv:2109.06893 (2021)

  18. Kull, I., Guérin, P.A., Verstraete, F.: Uncertainty and trade-offs in quantum multiparameter estimation. J. Phys. A: Math. Theor. 53, 244001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. Liu, C.C., Wang, D., Sun, W.Y., Ye, L.: Quantum Fisher information, quantum entanglement and correlation close to quantum critical phenomena. Quant. Inf. Process. 16, 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, N., Luo, S.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  21. Metwally, N.: Estimation of teleported and gained parameters in a non-inertial frame. Laser Phys. Lett. 14, 045202 (2017)

    Article  ADS  Google Scholar 

  22. Metwally, N.: Unruh acceleration effect on the precision of parameter estimation. arXiv:1609.02092 (2016)

  23. Ahmadi, M., Bruschi, D.E., Sabín, C., Adesso, G., Fuentes, I.: Relativistic Quantum metrology: Exploiting relativity to improve quantum measurement technologies. Sci. Rep. 4, 1 (2014)

    Google Scholar 

  24. Pappalardi, S., Russomanno, A., žunkovič, B., Iemini, F., Silva, A., Fazio, R.: Scrambling and entanglement spreading in long-range spin chains. Phys. Rev. B 98, 134303 (2018)

    Article  ADS  Google Scholar 

  25. Laurell, P., Scheie, A., Mukherjee, C.J., Koza, M.M., Enderle, M., Tylczynski, Z., Alvarez, G.: Quantifying and controlling entanglement in the quantum magnet cs2cocl4. Phys. Rev. Lett. 127, 037201 (2021)

    Article  ADS  Google Scholar 

  26. Xiong, H.N., Wang, X.G.: Dynamical quantum Fisher information in the Ising model. Physica A 390, 4719 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zhang, W, Liu, J, Ma, Jian, Guang, W.X.: Quantum Fisher information and spin squeezing in one-axis twisting model. Chin. Phys. B 23, 060302 (2014)

    Article  ADS  Google Scholar 

  28. Yang, H.Y., Zheng, Q., Zhi, Q.J.: Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence. Chin. Phys. B 26, 010601 (2017)

    Article  ADS  Google Scholar 

  29. Ma, J., Wang, X.: Fisher information and spin squeezing in the Lipkin-Meshkov-Glick model. Phys. Rev. A 80, 012318 (2009)

    Article  ADS  Google Scholar 

  30. Salvatori, G., Mandarino, A., Paris, M.G.: Characterization of anisotropy and quantum thermometry in Lipkin-Meshkov-Glick critical systems. Phys. Rev. A 90, 022111 (2014)

    Article  ADS  Google Scholar 

  31. Gabbrielli, M., Lepori, L., Pezzè, L.: Multipartite-entanglement tomography of a quantum simulator. New J. Phys. 21, 033039 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. Boixo, S., Monras, A.: Operational interpretation for global multipartite entanglement. Phys. Rev. Lett. 100, 100503 (2008)

    Article  ADS  Google Scholar 

  33. Gabbrielli, M., Lepori, L., Pezzè, L.: Multipartite-entanglement tomography of a quantum simulator. New J. Phys. 21, 033039 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. Abdel-Khalek, S., Berrada, K., Aldaghfag, S.A.: Quantum correlations and non-classical properties for two superconducting qubits interacting with a quantized field in the context of deformed Heisenberg algebra. Chaos, Solitons and Fractals 143, 110466 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  36. Abel-Hameed, H.F., Zidan, N., Metwally, N.: Quantum Fisher information of two superconducting charge qubits under dephasing noisy channel. Int. J. Mod Phys. B 32, 1850245 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Lin, D., Liu, Y., Zou, H.M.: Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength. Chin. Phys. B 27, 110303 (2018)

    Article  ADS  Google Scholar 

  38. Yang, J., Lin, D., Liu, R., Zou, H.M.: Quantum Fisher information and coherence of an atom in a dissipative cavity. Laser Phys. 30, 045202 (2020)

    Article  ADS  Google Scholar 

  39. Zidan, N., Abdel-Hameed, H.F., Metwally, N.: Quantum Fisher information of atomic system interacting with a single cavity mode in the presence of Kerr medium. Sci. Rep. 9, 2699 (2019)

    Article  ADS  Google Scholar 

  40. Altintas, A.A.: Quantum Fisher information of an open and noisy system in the steady state. J. Phys.: Conf. Ser. 766, 012011 (2016)

    Google Scholar 

  41. Liu, J., Yuan, H.: Quantum parameter estimation with optimal control. Phys. Rev. A 96, 012117 (2017)

    Article  ADS  Google Scholar 

  42. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.J.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)

    Article  ADS  Google Scholar 

  43. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  44. Liang, Q., An-Min, W., Xiao-San, M.: Effect of intrinsic decoherence of Milburn’s model on entanglement of two-qutrit states. Commun. Theor. Phys. 49, 516 (2008)

    Article  ADS  MATH  Google Scholar 

  45. Moya-Cessa, H., Bužek, V., Kim, M.S., Knight, P.L.: Intrinsic decoherence in the atom-field interaction. Phys. Rev. A 48, 3900 (1993)

    Article  ADS  Google Scholar 

  46. Kimm, K.: Decoherence of the quantum gate in Milburn’s model of decoherence. Phys. Rev. A 65, 022311 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  47. Kuang, L.M., Chen, X., Ge, M.L.: Influence of intrinsic decoherence on nonclassical effects in the multiphoton Jaynes-Cummings model. Phys. Rev. A 52, 1857 (1995)

    Article  ADS  Google Scholar 

  48. Li, S.B., Xu, J.B.: Magnetic impurity effects on the entanglement of three-qubit Heisenberg XY chain with intrinsic decoherence. Phys. Lett. A 334, 109 (2005)

    Article  ADS  MATH  Google Scholar 

  49. Dzyaloshinsky, I.: A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  50. Garate, I., Affleck, I.: Interplay between symmetric exchange anisotropy, uniform Dzyaloshinskii-Moriya interaction, and magnetic fields in the phase diagram of quantum magnets and superconductors. Phys. Rev B 81, 144419 (2010)

    Article  ADS  Google Scholar 

  51. Affleck, I., Oshikawa, M.: Field-induced gap in Cu benzoate and other S = 1/2 antiferromagnetic chains. Phys. Rev. B 60, 1038 (1999)

    Article  ADS  Google Scholar 

  52. Lima, L.S.: Influence of Dzyaloshinskii-Moriya interaction and external fields on quantum entanglement in half-integer spin one-dimensional antiferromagnets. Eur. Phys. J. D 73, 242 (2019)

    Article  ADS  Google Scholar 

  53. Lima, L.S.: Effect of Dzyaloshinskii-Moriya interaction on quantum entanglement in superconductors models of high tc. Eur. Phys. J. D 73, 6 (2019)

    Article  ADS  Google Scholar 

  54. Ye, B.L., Li, B., Wang, Z.X., Lp-Jost, X., Fei, S.M.: Quantum Fisher information and coherence in one-dimensional XY spin models with Dzyaloshinsky-Moriya interactions. Sci. China Phys. Mech. Astron. 61, 110312 (2018)

    Article  ADS  Google Scholar 

  55. Ozaydin, F., Altintas, A.A.: Parameter estimation with Dzyaloshinskii–Moriya interaction under external magnetic fields. Opt. Quant. Electron 52, 70 (2020)

    Article  Google Scholar 

  56. Ozaydin, F., Altintas, A.A.: Quantum metrology: Surpassing the shot-noise limit with Dzyaloshinskii-Moriya interaction. Sci. Rep. 5, 16360 (2015)

    Article  ADS  Google Scholar 

  57. Rahman, A.U., Noman, M., Javed, M., Ullah, A.: Dynamics of bipartite quantum correlations and coherence in classical environments described by pure and mixed Gaussian noises. Eur. Phys. J. Plus 136, 1 (2021)

    Article  Google Scholar 

  58. Nha, H., Carmichael, H.J.: Entanglement within the quantum trajectory description of open quantum systems. Phys. Rev. Lett. 93, 120408 (2004)

    Article  ADS  Google Scholar 

  59. Rahman, A.U., Noman, M., Javed, M., Luo, M.X., Ullah, A.: Quantum correlations of tripartite entangled states under Gaussian noise. Quant. Inf. Process. 20, 1 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  60. Rahman, A.U., Javed, M., Ullah, A., Ji, Z.: Probing tripartite entanglement and coherence dynamics in pure and mixed independent classical environments. Quant. Inf. Process. 20, 1 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  61. Rahman, A.U., Noman, M., Javed, M., Ullah, A., Luo, M.X.: Effects of classical fluctuating environments on decoherence and bipartite quantum correlations dynamics. Laser Phys. 31, 115202 (2021)

    Article  ADS  Google Scholar 

  62. Haddadi, S., Ghominejad, M., Akhound, A., Pourkarimi, M.R.: Entropic uncertainty relation and quantum coherence under Ising model with Dzyaloshinskii–Moriya interaction. Laser Phys. Lett. 18, 085204 (2021)

    Article  ADS  Google Scholar 

  63. Haddadi, S., Pourkarimi, M.R., Akhound, A., Ghominejad, M.: Quantum correlations and quantum-memory-assisted entropic uncertainty relation in two kinds of spin squeezing models. Laser Phys. Lett. 16, 095202 (2019)

    Article  ADS  MATH  Google Scholar 

  64. Akhound, A., Haddadi, S., Motlagh, M.A.C.: Analyzing the entanglement properties of graph states with generalized concurrence. Mod. Phys. Lett. B 33, 1950118 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  65. Hübener, H., De Giovannini, U., Schäfer, C., Andberger, J., Ruggenthaler, M., Faist, J., Rubio, A.: Engineering quantum materials with chiral optical cavities. Nat Materials 20, 438 (2021)

    Article  ADS  Google Scholar 

  66. Liu, J., Jing, X., Wang, X.: Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Phys. Rev. A 88, 042316 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Deanship of Graduate Studies at Jouf University for funding and supporting this research through the initiative of DGS, Graduate Students Research Support (GSR) at Jouf University, Saudi Arabia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour Zidan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alenezi, M., Zidan, N., Alhashash, A. et al. Quantum Fisher Information Dynamics in the Presence of Intrinsic Decoherence. Int J Theor Phys 61, 153 (2022). https://doi.org/10.1007/s10773-022-05143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05143-5

Keywords

Navigation